• Title/Summary/Keyword: Volatile organic acids

Search Result 326, Processing Time 0.019 seconds

Changes in Taste Compounds during Onion Vinegar Fermentation (양파초 발효과정 중의 정미성분 변화)

  • Jeong, Eun-Jeong;Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.298-305
    • /
    • 2016
  • Prior research has attempted to develop a method for fermentation of onion vinegar to satisfy customer quality standard. Onion wine (OW) and onion vinegar (OV) were produced by alcoholic and acetic fermentation of onion extracts (OE) using Saccharomyces cerevisiae and Acetobacter pasteurianus, and their taste compounds (non-volatile organic acids, non-protein N compounds, and free sugars) were determined. Main components of non-volatile organic acids were malic acid (50.1%) and citric acid (26.9%) in OE, whereas malic acid (28.1%), acetic acid (20.8%), lactic acid (20.1%), citric acid (13.3%), and succinic acid (12.0%) were detected in OW. Total concentrations of non-volatile organic acids in OV were 4,612.0 mg/100 g, which was 3.9 and 2.3 times higher than those of OE and OW, respectively. Non-volatile organic acids except malonic acid and acetic acid were reduced during acetic fermentation. Non-protein N compounds increased 4.23-fold ($41,526.8{\mu}g/100g$) during alcohol fermentation, and urea content was the highest of non-protein N compounds at $33,816{\mu}g/100g$. The reduced values in OV might be used as a nutritious element of Acetobacter pasteurianus. Free sugars (glucose, fructose, and sucrose) were detected in OE, whereas only fructose was absent in OW and OV.

Organic Acids and Volatile Flavor Compounds in Traditional Andong Sikhe (전통 안동식혜의 유기산 및 향기성분)

  • Woo, Hi-Seob;Choi, Cheong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.2
    • /
    • pp.208-213
    • /
    • 1995
  • Andong Sikhe in Korea was prepared and fermented at 5$^{\circ}C$ and the taste and flavor compounds were evaluated. Major flavor components were identified by gas chromatography-mass spectrometer as camphene, sabinene, 1-(1, 5-dimethyl-4-hexyl)-4-methyl-benzene, alpha-zingibirene, farnesene, 2, 6-bis(1, 1-dimethylethyl)-4-metethyl-phenol, beta-sesquiphellandrene, calalene, tetradecanoic acid, and 9, 12-octadecanoic acid. The concentration of nonvolatile organic acid such as lactic acid, oxalic acid and citric acid were 18.10mg/100g, 1.04mg/100g and 1.37mg/100g, respectively, and those of other nonvolatile organic acid were a little. The pH and acidity of Andong Sikhe were 4.06 and 0.32 during fermentation and storage.

  • PDF

Acid Fermentation Characteristics of Waste Activated Sludge using Acids and Ultrasonication (산용해 및 초음파를 이용한 하수 슬러지의 산발효 특성)

  • Sohn, C.H.;Hong, S.M.;Lee, B.H.
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.781-788
    • /
    • 2007
  • The Carbon source to enhance the denitrification is essential matter in the advanced sewage treatment. For the high level of nutrient removal, external carbons such as ethanol, methanol, volatile fatty acids and so on should be needed. In this study, the methods to increase the sludge solubilization and acidification rate were compared with waste activated sludges and food waste leachate. Ultrasonication and acids were used for the pretreatment of organic particles in sludges. As a results, the optimal temperature and HRT were $60^{\circ}C$ and 5 days, respectively. HAc, HPr, HBr, and other VFAs for acid fermentations reduced up to 22, 16, 14, and 48% with HRT reduction. For the increase of solubilization, 28% of solids destruction rate was shown at 0.3 watts/mL.

Investigation on the Cause of Malodor through the Reproduction of Chemicals (화학물질의 재현을 통한 악취발생원인 규명)

  • Park, Sang Jun;Oh, Young Hwan;Jo, Bo Yeon;Lee, Jae Shin;Kim, Eui Yong
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.392-398
    • /
    • 2014
  • It was confirmed that malodor connected with an air-conditioner in an automobile is caused by microbial volatile organic compounds (MVOCs) produced by microorganisms and through microorganisms coexisting with each other to form a biofilm on the evaporator surface. A bacterium, Methylobacterium aquaticum, can form a biofilm on the evaporator surface. The biofilm was composed of 45.79% C (Carbon), 42.36% O (Oxygen), 1.85% Na (Sodium), 5.42% Al (Aluminum), 1.39% P (Phosphorus), 0.74% Cl (Chlorine) and 2.45% K (Potassium). This result matches the composition of the biofilm formed on the surface of the used evaporator. It was determined that sulfur compounds (Hydrogen sulfide, Dimethyl sulfide) and organic acids (n-Butyric acid, n-Valeric acid, iso-Valeric acid) in the air which was blown into the automobile were generated by Methylobacterium aquaticum and Aspergillus versicolor, respectively. On the other hand, volatile organic compounds (Toluene, Xylene, 2-Ethylhexanol, 2-Phenyl- 2-propanol, Ethylbenzene) were not found. It is estimated that the reason is due to the low concentration of generated MVOCs or is caused by the change of some MVOCs depending on the nutrients (medium).

Analysis of Volatile Compounds in Bamboo and Wood Crude Vinegars by the Solid-Phase Microextracion(SPME) Method (SPME법에 의한 죽초 및 목초액 중의 휘발성 성분 분석)

  • Mun, Sung-Phil;Ku, Chang-Sub
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.80-86
    • /
    • 2002
  • Volatile compounds in three different kinds of crude vinegars obtained from oak (Quercus serrata), bamboo (phyllostachys) and pine (Pinus densiflora) species were analyzed by the solid-phase microextraction (SPME) method. A total of 264 peaks were detected on the chromatograms obtained from the polar (CBP 20) and the nonpolar (CBP 1) columns, which were used for analyzing the volatile compounds in these vinegars. The major volatile compounds identified by using the polar column were 2-butanone, acetic acid, guaiacol, phenol, cresols, 4-ethyl guaiacol, 4-ethyl phenol, and syringol. Using the nonpolar column, seven compounds could be identified: 1,2-dimethoxybenzyl alcohol, 1-hydroxy-2-butanone, 1-(2-furanyl)-1-propane, ethisolide, furfuryl acetate, 1,2-dimethoxybenzene, phenyl acetate. The volatile compounds were classified into five groups: phenols, neutral compounds, organic acids, esters and others. The phenols were the main component and comprised 49~65% of the volatile compounds of these vinegars. In the case of bamboo vinegar, the proportion of the phenols in the volatile compounds was lower than that of the two wood vinegars. However, the proportions of the neutral compounds and the organic acids were higher than those of the wood vinegars. Therefore, it seems that these differences of the proportions of the volatile compounds would make a certain difference of a smoke flavor between the bamboo vinegar and the wood vinegars.

Physicochemical Properties of and Volatile Components in Commercial Fruit Vinegars (시판 과실식초의 이화학적 품질 및 향기성분 비교)

  • Kim, Gui-Ran;Yoon, Sung-Ran;Lee, Ji-Hyun;Yeo, Soo-Hwan;Jeong, Yong-Jin;Yoon, Kyung-Young;Kwon, Joong-Ho
    • Food Science and Preservation
    • /
    • v.17 no.5
    • /
    • pp.616-624
    • /
    • 2010
  • We compared the physicochemical properties of, and volatile components in various commercial fruit vinegars (made from apples, grapes, and persimmons). Total acidity was highest in grape vinegars. Significant between-sample differences were evident in total and reducing sugar contents. Brownness, turbidity, and overall color difference (the ${\Delta}E$ value) were highest in persimmon vinegars. Free sugars were composed mainly of fructose, glucose, sucrose, and maltose. Major organic acids were present in the (descending abundance) order acetic acid, oxalic acid, citric acid, malic acid, and succinic acid, among-samples difference were negligible. Nine-essential free amino acids were detected in nine types of grape and persimmon vinegars, and in six varieties of apple vinegar. Among 17 types of volatile compounds identified in apple vinegars, 12 in grape vinegars, and 33 in persimmon vinegars, the main volatile components were acetic acid, ethyl acetate, isoamyl acetate, isovaleric acid, isoamyl alcohol, propanoic acid and phenethyl acetate. Volatile chemicals in commercial fruit vinegars were effectively analyzed using a SAW e-nose.

Effects of Chemical Composition and Temperature for the Production of Volatile Fatty Acids During Anaerobic Decomposition Process of Marine Sinking Particles

  • PARK Young-Tae;Nishimura Masahiko;Ohwada Kouichi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.888-892
    • /
    • 1996
  • Anaerobic decomposition experiments were performed to know the effect of chemical composition and temperature for the production of volatile fatty acids (VFAs) from marine sinking particles. Sinking particles were obtained with sediment traps set in Aburatsubo Inlet, Kanagawa Prefecture, Japan, in February, May and August. Sinking particles collected in May were composed of higher fraction of chl. a than the other two months. February and May samples were used to perform the decomposition experiments. VFAs production rates were higher in May sample than February. The production rates increased with increase of incubation temperature, and order of production rates of four VFAs were acetate>n-butyrate>propionate>iso-butyrate at $10^{\circ}C\;and\;20^{\circ}C$. At $28^{\circ}C$, the production rate of propionate was higher than n-butyrate. Based on these results, it is considered that production of VFAs from sinking particles during anaerobic decomposition depends on the chemical composition and temperature.

  • PDF

Comparison of Physicochemical Characteristics of Traditional and Commercial Kochujang during Fermentation (재래식과 공장산 고추장의 이화학적 특성 비교)

  • Kim, Young-Soo;Kwon, Dong-Jin;Oh, Hoon-Il;Kang, Tong-Sam
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 1994
  • Physicochemical characteristics of traditional kochujang fermented for 6 months and commercial kochujang were compared. Tested kochujang included 18 kinds of Sunchang kochujang prepared with glutinous rice, 10 kinds of Boeun kochujang prepared with barley and 17 kinds of Sachun kochujang prepared with wheat, and 10 kinds of commercial kochujang. Major free sugar was found to be glucose both in traditional and commercial kochujang. Fructose, maltose, and sucrose were also detected in small amounts. The contents of free sugars in traditional kochujang was approximately one fourth of those presented in commercial kochujang. Commercial kochujang showed the highest level of total free amino acids followed in decreasing order by Sachun, Sunchang, and Boeun kochujang. The most abundant free amino acid was serine in Sunchang kochujang and aspartic acid both in Boeun and Sachun kochujang. On the other hand, glutamic acid was the most abundant amino acid in commercial kochujang. Volatile organic acids in various kochujang were determined and acetic, propionic, butyric, and 3-methyl butanoic acids were found in traditional kochujang. However, 3-methyl butanoic arid was not found in commercial kochujang. The most abundant volatile acid was acetic acid in both tradtional and commercial kochujang. Analysis of non-volatile organic acids showed that large amounts of lactic, oxalic, and succinic acids were found in traditional and commercial kochujang. In addition to these, small amounts of itaconic, malic, malonic, and pyroglutamic acids were found in commercial kochujang.

  • PDF

Changes of Taste Components and Palatability during Chunggugjang Fermentation by Bacillus subtilis DC-2 (Bacillus subtilis DC-2를 이용한 청국장 발효과정 중 맛성분 및 기호도의 변화)

  • 정영건;최웅규;손동화;지원대;임무혁;최종동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.840-845
    • /
    • 1998
  • This study was conducted to produce the high quality of chunggugjang. The taste compounds of chunggugjang produced with Bacillus subtilis DC-2, pigment producing bacterium, were analysed, and palatability of chunggugjang was compared to that of commercial chunggugjang. Among the volatile organic acids, the contentof acetic acid was contained more than any other volatile organic acid. The major nonvolatile organic acid was lactic acid, followed by oxalic acid and citric acid. Tartaric acid was not detected. In case of free sugars, raffinose was sharply decreased between 72 and 96 hours after fermentation. Free amino acid was increased to 20 folds at 48 hours after fermentation compared to that of stemed soybean. As a result of sensory test, it was founded that the chunggujang fermented by Bacillus subtilis DC-2 was suitable to produce for commercial purpose.

  • PDF

Effects of Organic Acids Mix and Modified Atmosphere Packaging on the Storage Quality of Sliced Bacon

  • Muhlisin, Muhlisin;Kang, Sun-Moon;Choi, Won-Hee;Lee, Keun-Taik;Cheong, Sung-Hee;Lee, Sung-Ki
    • Food Science of Animal Resources
    • /
    • v.31 no.5
    • /
    • pp.710-718
    • /
    • 2011
  • The effects of organic acids mix (0.4%) and modified atmosphere packaging (MAP) on the storage quality of sliced bacon were investigated. Pork bellies were treated with or without organic acids at the curing stage. The organic acids mix comprised 35% sodium acetate, 25% salt, 15% calcium lactate, 11% trisodium citrate, 7% ascorbate, and 7% citric acid. The cured pork bellies were smoked and packaged with 50% $CO_2$ + 50% $N_2$ (50% $CO_2$-MAP) and 100% $N_2$ (100% $N_2$-MAP), and stored at $5^{\circ}C$ for 14 d. The 50% $CO_2$-MAP showed a higher pH value (p<0.05) up to 10 d, a lower protein deterioration (p<0.05) as measured by volatile basic nitrogen (VBN) from 6 to 14 d, and a higher color value of lightness (CIE $L^*$) compared to 100% $N_2$-MAP. The development of lipid oxidation measured by thiobarbituric acid reactive substance (TBARS) values seemed to be effectively controlled throughout the storage period in both 50% $CO_2$-MAP and 100% $N_2$-MAP regardless of the application of organic acids. The 50% $CO_2$-MAP inhibited the growth of aerobic and anaerobic bacteria (p<0.05) both in non-added and bacon added with organic acids mix. The 50% $CO_2$-MAP alone seemed to be effective in delaying the growth of bacteria since the use of organic acids mix gave no additional effects. The addition of organic acids mix lowered the pH value (p<0.05), effectively retarded the protein deterioration (p<0.05), and showed a higher color value of lightness (CIE $L^*$) value (p<0.05) and lower color value of redness (CIE $a^*$) value (p<0.05). In conclusion, 50% $CO^2$-MAP showed better quality and self-life of sliced bacon during storage. However, the beneficial effect of organic acids mix was not noticed in the concentration used in this experiment.