• 제목/요약/키워드: Volatile Organic compounds

검색결과 1,282건 처리시간 0.022초

수도권 일부지역의 실내 스크린골프장의 공기질 평가 (A Study on the Air Quality of Indoor Screen Golf in Seoul)

  • 조호동;노재훈;김치년;심상효;원종욱
    • 한국산업보건학회지
    • /
    • 제20권3호
    • /
    • pp.192-202
    • /
    • 2010
  • This study aimed to suggest the severity of indoor air pollutants in screen gold arenas which were not sufficiently investigated in Korea up to now and to help users to enjoy golf in more pleasant indoor environment. The indoor environment survey was conducted with 21 screen gold arenas in Seoul from Oct. 28, 2008 to March 13, 2009. Indoor air quality was measured and analyzed in accordance with the Air Pollution Process Test Method specified bu NIOSH(2005). The screen golf arenas are mostly in the underground floors in this study, 4 on the ground floors(19.0%) and 17 in the underground floors(81.0%). In the air in screen golf arenas, the geometric mean of benzene, toluene, ethylbenzene and xylene were 2.92 ${\mu}g/m^3$, 70.34 ${\mu}g/m^3$, 14.00${\mu}g/m^3$ and 31.43 ${\mu}g/m^3$, respectively, which exceeded the exposure limites. Each arena exceeded the exposure limit for one pollutant each. However, styrene didn't exceed the limit as 8.09 ${\mu}g/m^3$. Furthermore, the geometric mean of formaldehyde was 63.11${\mu}g/m^3$ and 7 arenas exceeded the limit. The geometric mean of volatile organic compounds(VOCs) was 428.41${\mu}g/m^3$ and 10 arenas exceeded the limit. For the density distribution of pollutants by location, benzene, toluene, ethylbenzene, xylene, styrene and formaldehyde showed higher density distribution in underground spaces, for which the statistically significant difference was not found. However, PM10 showed the statistically significant difference (p<0.05). In accordance with the analysis on the correlation between the density of pollutants in the screen golf arenas, Pearson correlation coefficient between ethylbenzene and styrene was 0.980, very significant correlation(p<0.01). The correlation coefficients between the density of toluene, ethylbenzene, xylene and styrene and that of VOCs were 0.543, 0.434, 0.451 and 0.459, respectively, which demonstrated the statistically significant difference (p<0.05).

산단지역 공기 중 휘발성유기화합물농도와 지역주민의 노출 수준 (Concentration of volatile organic compounds(VOCs) in ambient air and level of residents in industrial area)

  • 우경숙;박희진;강택신;김근배;전준민;장봉기;이종화;손부순
    • 한국산업보건학회지
    • /
    • 제25권1호
    • /
    • pp.104-114
    • /
    • 2015
  • Objectives: The purpose of this study is to investigate the atmospheric concentration of VOCs and the urinary concentration of t,t-MA, HA, MA in the industrial complex of Yeosu, South Jeolla Province. Methods: In order to study seasonal patterns of air concentration of VOCs, measurements were taken at five sampling sites around Yeosu from June 2013 to June 2014. Urinary metabolite excretionsfrom 671 subjects, exposure and comparison area were analyzed. Results: The average concentration of VOCs in the air was 1.53ppb for benzene, 0.73ppb for toluene, 0.22ppb for ethylbenzene, 0.52ppb for xylene and 0.12ppb for styrene. The concentration of benzene was somewhat higher than the year-average standard ($5{\mu}g/m^3$, about 1.5ppb) of the domestic air-environment criteria newly established in 2010.The metabolic concentration of VOCs in the urine of the entire sample was analyzed at $47.76{\mu}g/g\;cr.$, 213.07mg/g cr., and $290.09{\mu}g/g\;cr.$ for t,t-MA, HA, and MA, respectively. Compared with the average values for Korea as presented in the first basic survey of national environmental conservation ( $49.8{\mu}g/g\;cr.$ for t,t-MA, 0.17g/g cr. for HA, and 0.26mg/g cr. for MA), the metabolic concentrations of HA and MA in urine were higher than the average values. Conclusions: The concentration of VOCs in the air and urinary metabolites of the exposed and control areas showed that the concentrations of all substances were higher in the exposed area than in the control area.

접착제에서 발생하는 휘발성유기화합물(VOCs)에 대한 안정성 연구 (The Studies of Stability for Volatile Organic Compounds(VOCs) Generated from the Adhesives)

  • 이현경;위광철
    • 보존과학회지
    • /
    • 제31권3호
    • /
    • pp.243-254
    • /
    • 2015
  • 본 연구에서는 각종 재료에 의한 잠재적인 손상 검증 실험인 Oddy Test를 통해 금속유물 보존처리 과정에서 사용되는 접착제 및 코팅제를 선정하여 부식반응이 관찰된 시편으로 손상 원인을 확인하고자 한다. 6종의 접착제와 Fe, Pb, Cu, Ag 4종의 금속 시편을 사용하였다. 연구 결과, 중량 변화는 Cellulose계 접착제에 노출된 Fe시편이 29.87%로 높은 증가를 보였으며, Pb, Cu, Ag시편 순으로 증가율을 보였다. 색도 측정 결과는 Cellulose계 접착제의 변화값이 높게 나타났다. 접착제에서 발생하는 VOCs를 GC-MS로 분석한 결과, 접착제 6종 모두 Acetic acid가 검출되었다. 그 중 Cellulose계 접착제에서 다른 5종의 접착제와 비교하였을 때 1mg당 VOCs농도가 900배 이상 함량이 높았고, 소량의 Formic acid가 검출되었다. 이는 산성 불순물과 빛에 의해 촉진되기 때문으로 추측된다. 이 반응이 분자량 감소와 질소산화물과 다량의 산을 생성하는 결과가 되며 황변화 등 부식 촉진의 요인이 된다고 판단된다.

수도권 지역에서 대기질 측정망 자료를 이용한 광화학모델의 이동오염원 배출량 검증 (Verification of Mobile Emission for CMAQ using an Observation-based Approach in Seoul Metropolitan Area)

  • 이용미;이현주;유철;송정희;김지영;홍지형
    • 한국대기환경학회지
    • /
    • 제25권5호
    • /
    • pp.369-381
    • /
    • 2009
  • The objective of this study was to simulate surface air pollutants and to examine reliability of mobile emission for CMAQ system using an observation-based approach in the Seoul Metropolitan Area. Accurate assessment of emissions from mobile source is one of the most debatable parts in the entire emissions inventory process. For this study, we evaluated the official emission inventories of Volatile Organic Compounds (VOCs) and nitrogen oxides ($NO_x$) using an observation-based approach. In this paper, we achieved VOCs/CO and $NO_x$/CO ratios derived from ambient measurements taken from June to August of 2005 in early morning (07:00~08:00). And we compared them with those derived from the emission inventory. Based on these ratios and on the assumption that official inventory of CO emissions is reasonably accurate, mobile emissions of $NO_x$ seem to be slightly overestimated and VOCs emissions significantly underestimated. The results of simulations using modified emission of mobile source were in closer agreement with the observation results except NO. Predicted NO values based on revised $NO_x$ emissions were considerably lower than the observed values. Using modified emission inventories brings the modeled values into closer agreement with observed ozone levels in Seoul. Especially in case of CO, $NO_x$ and VOCs emission, the modified values were suitable for simulating ozone levels in Seoul and Gyeonggi. However, ozone values predicted using the modified emissions were higher than the observed and predicted values based on original emissions. According to the 95 percentile ozone concentrations, emission revised by CO, $NO_x$ and VOCs from mobile source was the best for predicting high concentration.

CalTOX 모델에 의한 휘발성유기화합물의 대기 중 예측 농도와 실측 농도간의 타당성 분석에 관한 연구 (A Study on Analyzing the Validity between the Predicted and Measured Concentrations of VOCs in the Atmosphere Using the CalTOX Model)

  • 김옥;이민우;박상현;박창용;송영호;김병빈;최진하;이진헌
    • 한국환경보건학회지
    • /
    • 제46권5호
    • /
    • pp.576-587
    • /
    • 2020
  • Objectives: This study calculated local residents exposures to VOCs (Volatile Organic Compounds) released into the atmosphere using the CalTOX model and carried out uncertainty analysis and sensitivity analysis. The model validity was analyzed by comparing the predicted and the actual atmospheric concentrations. Methods: Uncertainty was parsed by conducting a Monte Carlo simulation. Sensitivity was dissected with the regression (coefficients) method. The model validity was analyzed by applying r2 (coefficient of determination), RMSE (root mean square error), and the Nash-Sutcliffe EI (efficiency index) formula. Results: Among the concentrations in the atmosphere in this study, benzene was the highest and the lifetime average daily dose of benzene and the average daily dose of xylene were high. In terms of the sensitivity analysis outcome, the source term to air, exposure time, indoors resting (ETri), exposure time, outdoors at home (ETao), yearly average wind speed (v_w), contaminated area in ㎡ (Area), active breathing rate (BRa), resting breathing rate (BRr), exposure time, and active indoors (ETai) were elicited as input variables having great influence upon this model. In consequence of inspecting the validity of the model, r2 appeared to be a value close to 1 and RMSE appeared to be a value close to 0, but EI indicated unacceptable model efficiency. To supplement this value, the regression formula was derived for benzene with y=0.002+15.48x, ethylbenzene with y ≡ 0.001+57.240x, styrene with y=0.000+42.249x, toluene with y=0.004+91.588x, and xylene with y=0.000+0.007x. Conclusions: In consequence of inspecting the validity of the model, r2 appeared to be a value close to 1 and RMSE appeared to be a value close to 0, but EI indicated unacceptable model efficiency. This will be able to be used as base data for securing the accuracy and reliability of the model.

오이를 첨가한 막걸리의 발효기간 중 이화학적 및 미생물학적 특성 (Physicochemical and Microbial Properties of Korean Traditional Rice Wine, Makgeolli, Supplemented with Cucumber during Fermentation)

  • 김상연;김은경;윤성준;조남지;정수경;권상호;장윤혁;정윤화
    • 한국식품영양과학회지
    • /
    • 제40권2호
    • /
    • pp.223-228
    • /
    • 2011
  • 본 연구에서는 오이를 첨가한 막걸리의 특성을 알아보기 위하여 쌀의 20%만큼 오이를 첨가하여 막걸리를 제조한 후 이화학적 및 미생물학적 특성을 평가하였다. 발효 6일째 알코올 함량은 대조군 16.3%, 오이 막걸리 16.2%로 유의적인 차이가 없었으며, 발효 6일째 두 시료의 pH도 차이가 나타나지 않았다. 총산은 두 시료 모두 발효 1일째에 급격히 증가하고, 그 이후 완만히 증가하였다. 총 균수, 유산균수 및 효모수 모두 오이 막걸리가 대조군보다 높았으며, 색도는 대조군과 오이 막걸리 사이에 큰 차이가 나타나지 않았다. 유리당 중 glucose는 발효가 진행되면서 감소하였고, 대조군과 오이 막걸리 모두 succinic acid 함량이 가장 높았다. 휘발성 화합물 중 오이 막걸리에서 가장 많이 동정된 성분은 3-methyl-1-butanol, 2-methyl-1-propanol, ethyl acetate이었다.

실내공기질 공정시험법 중 VOCs 측정방법의 문제점 고찰 및 개선방안에 관한 연구 (Critical Evaluation of and Suggestions for the VOCs Measurement Method Established as the Korean Indoor Air Quality Standard Method)

  • 예진;정동희;백성옥
    • 한국대기환경학회지
    • /
    • 제30권6호
    • /
    • pp.586-599
    • /
    • 2014
  • During the last two decades, indoor air quality and volatile organic compounds (VOCs) have been of concern in Korean society due to their nature of potential health impacts. In order to investigate the pollution levels of VOCss in indoor environments, establishment of a solid test method for monitoring the airborne VOCss is essential. In Korea, a method based on adsorbent sampling and GC analysis coupled with thermal desorption was proclaimed as the Korea Standard Method for Indoor Air Quality Test. This study was carried out to examine some inherent problems of the VOCs measurement method. The VOCs method does not describe in detail preparing the standard samples. The standard samples may be prepared by impregnation of either liquid standard solutions or a mixture of standard gases. In this study, we investigated the optimal temperature condition for transferring the liquid standards onto a standard adsorbent tube. As a result, keeping the impregnation temperature at $250^{\circ}C$ will be recommended in regard of the boiling points of multiple target analytes and the thermal stability of the adsorbent. We also demonstrated some problems associated with handling of a syringe used for transferring the standard solutions onto the adsorbent tubes, and a best way to get rid of the syringe problems was suggested. Finally, a number of field works were conducted to evaluate the performance of adsorbent sampling methods. Comparison of different adsorbent tubes, i.e. tube packed with single sorbent (Tenax) and double sorbents (Tenax with Carbotrap), revealed that 30 to 40% differences between the two groups, implying that sampling efficiency is depending on the volatility and the strength of adsorbents. However, duplicate precisions for VOCs sampling with a same type of adsorbent and at same flow rates appeared to be satisfactory to be all within 20%, which is a quality control guideline. Distributed volume precisions were also found to be within a guideline value, 25%, although the precision was in general inferior to the duplicate precision. The Korea indoor VOCs test method should be more refined and improved in many aspects, particularly procedure and instrumentation for preparing the standard samples and specification of quality control assessment.

Development of Source Profiles and Estimation of Source Contribution for Hazardous Air Pollutants by the Principal Component Analysis in Indoor Air

  • Kim, Yoon-Shin;Hong, Seoung-Cheol;Lee, Cheol-Min;Kim, Jong-Cheol;Jeon, Hyung-Jin;Song, Kyoung-Min;Roh, Young-Man
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 국제학술대회
    • /
    • pp.254-258
    • /
    • 2005
  • The purpose of this study is to characterize the indoor-outdoor relationship of airborne pollutants and recognize probable sources in inside and outside individual apartments in Seoul metropolitan. Simultaneous air monitoring in inside and outside of the 16 Korean Apartments classified into 2groups: less than 1 year old and more than 4 years old from October, 2004 to February, 2005were sampled f3r airborne pollutants(volatile organic compounds, formaldehyde, respiratory particles, carbon dioxide and bacteria) using the Korean Indoor Air Quality Official Method. The concentrations of $CO_2$, TVOCs, HCHO, bacteria and PM10 in the less than 1 year old apartments were determined to be $773.6{\pm}422.3ppm$, $4,393.8{\pm}2,758.2{\mu}g/m^3$, $98.0{\pm}56.4{\mu}g/m^3$, $254.0{\pm}186.3CFU/m^3$ and $31.7{\pm}14.8{\mu}g/m^3$, respectively, Also, the concentrations of those in the more than 4 years old apartments were determined to be $798.9{\pm}266.5ppm$, $792.7{\pm}398.3{\mu}g/m^3$, $70.0{\pm}30.7{\mu}g/m^3$, $245.6{\pm}122.0CFU/m^3$, $49.7f28.7{\pm}g/m^3$, respectively. The average ratios of the indoor and outdoor concentrations of $CO_2$, TVOCs, HCHO, bacteria and PM10 were 2.2, 3.6, 3.1, 3.9 and 1.4, respectively. These results of this analysis is suggested that $CO_2$, TVOCs, HCHO, bacteria and PM10 in indoor air are both emitted from source within the apartment environment and partly come from outdoor air. With the above considerations in mind, it is suggested that the research for source contribution of indoor air pollutants should be expanded and the detailed interpretation of the results on these needed further study(using principal component analysis(PCA).

  • PDF

소형챔버법을 이용한 건축자재 중 벽지, 페인트 및 접착제의 VOCs 방출특성 평가 (Assessment of VOCs Emission Characteristics from Building Materials such as Wall Paper, Paints, and Adhesives Using Small Chamber Method)

  • 이석조;장성기;조용성;정경미;정기호
    • 한국대기환경학회지
    • /
    • 제21권2호
    • /
    • pp.191-204
    • /
    • 2005
  • Building and furnishing materials and consumer product are important sources of volatile organic compounds(VOCs) and other aldehydes in the indoor environment. Some available evidence indicates that VOCs can cause adverse health effects to the building occupants and contribute to some of the symptoms of what we call, 'Sick House Syndrome' in Korea. The aims of this study were to evaluate the efficiency of emission system and to investigate comparison of the emission characteristics of different building materials such as wall-papers, paints, and adhesives. The emission of VOCs from building materials were determined in the small chambers defining the temperature, relative humidity, and ventilation rate in this study. VOCs were sampled for 20 minutes using Tenax-TA tubes and analysed by GC-MS with thermal desorption. The stability of conditions for temperature and relative humidity in this small chamber system showed that the fluctuation of temperature was between 25.4$\pm$0.3$^{\circ}C$ and that of relative humidity was 50.2$\pm$0.6$\%$ under the airflow rate of 167 mL/min. The emission tests from building materials resulted in TVOC emission rates of 0.011 $\~$ 3.108 mg/m$^{2}$h after 7 days. The general wall-papers emitted toluene abundantly and the natural wall-papers mainly emitted n-butanol and a minor amount of alkanes compound such as n -tetradecane. The remainder consisted of toluene, m,p -xylene, and styrene. The paints mainly emitted toluene and the adhesives mainly emitted chloroform as well as toluene. As a result, this study is expected to suggest meaningful data for future studies in exposure control through selecting healthy building materials and for the establishment of guidelines for various building materials in Korea.

Effects of Concrete and Wood Building Environments on Pregnant Dams and Embryo-Fetal Development in Rats

  • Shin, In-Sik;Kim, Sung-Hwan;Lim, Jeong-Hyeon;Lee, Jong-Chan;Park, Na-Hyeong;Shin, Dong-Ho;Moon, Chang-Jong;Kim, Sung-Ho;Kim, Jong-Choon
    • Toxicological Research
    • /
    • 제25권4호
    • /
    • pp.209-216
    • /
    • 2009
  • We have recently reported that the continuous exposure of rats to a concrete building environment under cool temperatures had adverse effects on general health parameters and embryo-fetal development. This study examined to compare the potential effects of concrete and wood building environments on pregnant dams and embryo-fetal development in rats. Groups of 10 mated females were exposed to polycarbonate (control), concrete, or wood cages from gestational days (GD) 0 to 20 under cool temperatures $(11.9\sim12.3^{\circ}C)$. All the females underwent a caesarean section on GD 20, and their fetuses were examined for any morphological abnormalities. The temperatures in the cages were similar in all groups but the relative humidity in the concrete and wood groups were higher than in the control group. The concentration of volatile organic compounds in the wood group was higher than in the control group. In the concrete group, maternal effects manifested as an increase in the incidence of clinical signs, a lower body weight, and a decrease in the thymus and ovary weights. Developmental effects included increased post-implantation loss and decreased litter size. Infrared thermal analysis showed that the skin temperature of the rats in the concrete group was lower than that in the control group. In contrast, there were no exposure-related adverse effects on the maternal and developmental parameters in the wood group. Overall, the exposure of pregnant rats to a concrete building environment under cool temperatures has adverse effects on the clinical signs, body weight, skin temperature, organ weight, and embryo-fetal development. On the other hand, exposure to a wood building environment does not have any adverse effects in rats.