• Title/Summary/Keyword: Volatile Organic compounds

Search Result 1,281, Processing Time 0.025 seconds

Differential Modification of Sperm Parameters by Various Volatile Organic Compounds

  • Choi, Dal-Woong;Sohn, Jong-Ryeul;Moon, Kyung-Whan;Byeon, Sang-Hoon;Yoo, Dong-Chul;Kim, Hi-Chol;Kim, Young-Whan
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.319-322
    • /
    • 2005
  • Porous building materials are not only sources of indoor air pollutants such as volatile organic compounds (VOCs) but they are also strong sinks of these pollutants. Volatile organic compounds have been implicated in impaired spermatogenesis, increase in the incidence of malformed sperm and decrease in the percentage of moving sperm. The aim of this study was to determine and compare the direct effects of various volatile organic compounds (phenol, formaldehyde; HCHO, ethanol, toluene, styrene) on motility and survival rate of human sperm in vitro. Semen samples from 3 health subjects were prepared using swim-up method and 1-10mM volatile organic compounds were added to the test medium. HCHO and phenol produced significant decreases in the motility and survival rate with a different potency. The most potent inhibition of motility and survival rate was observed after exposure to HCHO. Less than 1mM HCHO significantly inhibited sperm motility. When ethanol is added directly to sperm, at concentrations equivalent to that in serum after heavy drinking, these damaging effects were lowest compared with other volatile organic compounds. Present study shows that each compound has differential toxic potency to human sperm and we need special caution for the use of HCHO and phenol.

  • PDF

Concentrations of VOCs and Formaldehyde in Newly Constructed Apartment Buildings Before and After Residence (신축공동주택의 입주전후 VOCs 및 HCHO 농도)

  • Park, Sang-Eun;Kim, Hyun-Wook;Sim, Sang-Hyo;Lee, Se-Hoon;Koo, Jung-Wan
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.2 s.95
    • /
    • pp.98-103
    • /
    • 2007
  • This study was performed to measure the changed concentrations of formaldehyde and volatile organic compounds after moving in the newly constructed apartment buildings at Seoul. From December 2004 to October 2005, we measured the concentration of formaldehyde and volatile organic compounds in newly constructed apartment buildings before and after residence. In conclusion, it showed that there was a significant relationship association between the con centration of the volatile organic compound and the formaldehyde and remodeling of the house, built in-furniture, and ventilation of the house. Therefore, it was suggested that we need preventive measures and management plans about various factors such. as remodeling, and built in-furniture, ventilation to decrease the concentrations of volatile organic compounds and formaldehyde.

Microbial Biosurfactants and the Treatment of Volatile Organic Compounds (생물계면활성제를 이용한 휘발성유기물질의 처리)

  • Lee, Ki-Sup;Kim, Gi-Eun
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.17-24
    • /
    • 2009
  • For the biosurfactant production process at first Candida bombicola, Sphingomonas yanoikuyae, Sphingomonas chungbukensis and Myxococcus flavescens were studied. As the most productive microorganisms C. bombicola, S. yanoikuyae and S. chungbukensis were selected. During many petrochemical industrial processes variable volatile organic componds are produced and they can cause an unpleasent and unhealthy atmosphere. Usually the volatile organic compounds are treated with chemical detergents. The chemical detergents cannot be easily degradable and can be accumulated in the nature. In this study we tried to develop a production process for the biosurfactants, which can substitute some chemical detergents in some chemical processes, with microorganisms. At second the treatment of the volatile organic compounds with the biosurfactants were tested and compared with the treatment with chemical detergent. The production productivities of the biosurfactant with microorganisms were compared. The growth patterns and kinetics of the microbial cells and the surface tension values of the biosurfactants were studied. The changes of the surface tension in variable pH conditions and sodium chloride concentrations were also studied. The volatile organic carbons were treated in a small plant scale. As the result of this study, it indicated that the specific growth rate of S. chungbukensis was the fastest by 0.144 ($hr^{-1}$). For surface tension, C. bombicola (38.1 dyne/cm) had the lowest value, and solubility of the volatile organic carbon was similar in C. bombicola and S. chungbukensis. (Toluene: about 0.1 Unit, Chloroform: about 0.6${\sim}$0.7 Unit, Benzene: about 0.5${\sim}$0.8 Unit). The biosurfactant, which were produced by C. bombicola, was selected for the further study for the volatile organic carbon treatment. With the biosurfactans from C. bombicola could remove the volatile organic carbon about 80% and this removal rate can be comparable with chemical detergent.

Changes of Volatile Organic Compounds of Rhus verniciflua S. Bark by Fermentation (발효에 의한 옻나무 수피의 휘발성 유기성분 변화)

  • Ryu, Keun-Young;Seo, Hye-Young;Han, Kyu-Jai;Jeong, Yang-Mo;Kim, Kyong-Su;Hong, Kwang-Joon;You, Sang-Ha
    • Food Science and Preservation
    • /
    • v.14 no.3
    • /
    • pp.308-314
    • /
    • 2007
  • To investigate effects of fermentation on volatile components, we analyzed volatile organic compounds of raw and fermented Rhus verniciflua S. bark. A 50%(w/v) sugar solution was used for fermentation. Volatile organic compounds of raw and fermented Rhus verniciflua S. were extracted by the simultaneous steam distillation and extraction(SDE) method, with a mixture of n-pentane and diethylether(1:1, v/v) and analyzed by gas chromatograph-mass spectrometer. A total of 51 and 27 volatile organic compounds were detected in raw and fermented samples, respectively, and were mainly alcohols. Compounds such as ethyl acetate, 2-methyl-3-buten-2-ol, 3-methylbutanal, 1-octen-3-o1, 3-methyl-2-butanone, hexanal and pentanal were detected as the primary compounds in the raw sample. The fermented sample showed sour different volatile compounds, such as ethanol, ethyl acetate, ethyl lactate and 3-methylbutanol. Thus, a number of volatile organic compounds were synthesized after fermentation of Rhus verniciflua S. bark.

Determination of Volatile Organic Compounds in Waste using HS/GC/MS Analysis (Headspace/GC/MS를 이용한 폐기물중 휘발성 유기화합물의 분석)

  • Kim, Kyeo-Keun;Shin, Sun-Kyoung;Ju, Do-Weon
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.72-80
    • /
    • 2000
  • The HS/GC/MS method was performed to analyze the volatile organic compounds in waste sludge samples. This study was performed to establish the fundamental data by studying the effects of salt, equilibrium temperature and time in the volatile organic compounds analysis. The presence of salts have been found to increase the sensitivity. The peak area is increased from 1.07 to 2.61 times by adding the salts to the water sample, compared with a salt tree sample. The recoveries of target compounds have found between 90% and 127% at sample temperature of $85^{\circ}C$ for 30 min. This HS/GC/MS method can be applied to analyze the volatile organic compounds and organohalo compounds in the environmental matrix.

  • PDF

Determination of Volatile Organic Compounds (VOCs) in Drinking Water using Solid Phase Microextraction (SPME) (SPME를 이용한 수용액중의 휘발성 유기화합물 분석)

  • Park, Gyo-Beom;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.277-281
    • /
    • 2000
  • The solid phase microextrction (SPME) fiber which contains $100{\mu}m$ polydimethyl siloxane of a stationary phase was used for the analysis of volatile organic compounds contained in aqueous solution. sixteen volatile organic compounds, which were spiked in blank water and extracted by the headspace SPME techique, were analyzed by gas chromatography/mass spectrometry (GC/MS). Analytical results showed that the percent of average recoveries and relative standard deviations were 97% and 4.7%, respectively. The value of detection limit was ranged from 0.01 to $0.5{\mu}g/l$. These results are more accurate than those obtained by the other methods such as purge and trap and headspace methods.

  • PDF

Emissions of Volatile Organic Compounds from a Swine Shed

  • Osaka, Nao;Miyazaki, Akane;Tanaka, Nobuyuki
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.178-191
    • /
    • 2018
  • The concentrations and chemical compositions of volatile organic compounds (VOCs), including volatile fatty acids, phenols, indoles, aldehydes, and ketones, which are the main organic compounds generated by swine, were investigated in July and October 2016 and January 2017. In addition, the emission rates and annual emissions of these components from the swine shed were estimated. The concentrations of VOCs in the swine shed averaged $511.3{\mu}g\;m^{-3}$ in summer, $315.5{\mu}g\;m^{-3}$ in fall and $218.6{\mu}g\;m^{-3}$ in winter. Acetone, acetic acid, propionic acid, and butyric acid were the predominant components of the VOCs, accounting for 80-88% of the total VOCs. The hourly variations of VOC concentrations in the swine shed in fall and winter suggest that the VOC concentrations were related to the ventilation rate of the swine shed, the activity of the swine, and the temperature in the swine shed. Accordingly, the emission rates of VOCs from the swine shed were $1-2{\times}10^3{\mu}g(h\;kg-swine)^{-1}$.

The Effects of Volatile Organic Compounds on Apoptosis of Human Neutrophils and Eosinophils

  • Yang, Eun-Ju;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.16 no.2
    • /
    • pp.123-126
    • /
    • 2010
  • Volatile organic compounds are commonly off gassed from various building materials and can induce sick building syndrome. Volatile organic compounds such as formaldehyde, xylene and toluene are known as toxic agents in immune cells. Human leukocytes, particularly, neutrophils and eosinophils play important roles in the regulation of immune responses. In this study, we investigated the toxic effects of formaldehyde, ortho-xylene (o-xylene), para-xylene (p-xylene) and toluene on the apoptosis of neutrophils and eosinophils isolated from the blood of healthy donors. Formaldehyde increased the constitutive apoptosis of neutrophils and eosinophils. o-xylene, p-xylene and toluene increased the spontaneous apoptosis of eosinophils, but not that of neutrophils. Formaldehyde increased the protein level of IL-8 in neutrophils and eosinophils, and suppressed the MCP-1 expression in neutrophils. The release of IL-6 from neutrophils was diminished by volatile organic compounds used in this study. In conclusion, formaldehyde, xylene and toluene elevate the apoptosis of neutrophils and eosinophils, and regulate the release of cytokine and chemokine in neutrophils and eosinophils. These results indicate that formaldehyde, xylene and toluene have a cytotoxicity in human neutrophils and eosinophils and may damage the modulation of immune responses.

Removal Rates of VOCs(Volatile Organic Compounds) for Treatment Condition using DAF(Dissolved Air Flotation) in Water Treatment (DAF(Dissolved Air Flotation)를 이용한 정수처리에서 처리조건에 따른 VOCs(Volatile Organic Compounds)의 처리효율에 대한 연구)

  • Kim, Mi-Jeong;Jun, Se-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.91-100
    • /
    • 1999
  • Treatment conditions of DAF(Dissolved Air Flotation) and removal rates of VOCs(Volatile Organic Compounds) in mixed water of H raw water and VOCs were investigated. The used VOCs were benzene, toluene, ethylbenzene, and xylene in aromatic compounds and iso propyl mereaptan, n-butyl mereaptan, dimethyl disulfide, and iso butyl mercaptan in odors. The related parameters include water type, treatment method, clay concentration, pH condition, flocculation time, flotation time, per-cent recycle, water temperature, pressure. The removal rates of VOCs were different on treatment process and water condition. Treatment time was longer, removal rates of VOCs was higher. Water temperature was more important than pressure in DAF parameters. Molecular weight was related with removal rate in several kinds of VOCs were decraesed by competition of each component in II raw water. When algac blooming D water was treated by DAF, TCOD(Total chemical Oxygen Demand) and chorophyll a was removed over 96%.

  • PDF

A Study on Purge Efficiency in Purge and Trap Analysis of VOCs in Water

  • Lee, Gang Jin;Pyo, Hui Su;Park, Song Ja;Yu, Eun A;Lee, Dae Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.171-178
    • /
    • 2001
  • A Purge and Trap Concentrator has been used to analyze various volatile organic compounds in water, operating several parameters affecting the extraction efficiencies of these compounds. The object of the present study was to observe the purge efficiencies of 40 volatile organic compounds (VOCs) in water, according to the change of parameters (purge time, dry purge time, sample temperature), and to determine the optimum condition of analysis of VOCs. The Purge and Trap Concentrator was interfaced with a narrow capillary connected to a gas chromatography mass spectrometer. At this condition, the detection limits of VOCs were in the range of 0.1-0.5 ㎍/L.