• Title/Summary/Keyword: Volatile

Search Result 5,274, Processing Time 0.039 seconds

Volatile compounds and some physico-chemical properties of pastırma produced with different nitrate levels

  • Akkose, Ahmet;Unal, Nazen;Yalinkilic, Baris;Kaban, Guzin;Kaya, Mukerrem
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.8
    • /
    • pp.1168-1174
    • /
    • 2017
  • Objective: The aim of the study was to evaluate the effects of different nitrate levels (150, 300, 450, and 600 ppm $KNO_3$) on the volatile compounds and some other properties of pastırma. Methods: Pastırma samples were produced under the controlled condition and analyses of volatile compounds, and thiobarbituric acid reactive substances (TBARS) as an indicator of lipid oxidation, non-protein nitrogenous matter content as an indicator of proteolysis, color and residual nitrite were carried out on the final product. The profile of volatile compounds of pastırma samples was analyzed by gas chromatography/mass spectrometry using a solid phase microextraction. Results: Nitrate level had a significant effect on pH value (p<0.05) and a very significant effect on TBARS value (p<0.01). No significant differences were determined in terms of $a_w$ value, non-protein nitrogenous substance content, color and residual nitrite between pastırma groups produced by using different nitrate levels. Nitrate level had a significant (p<0.05) or a very significant (p<0.01) effect on some volatile compounds. It was determined that the amounts and counts of volatile compounds were lower in the 450 and especially 600 ppm nitrate levels than 150 and 300 ppm nitrate levels (p<0.05). While the use of 600 ppm nitrate did not cause an increase in residual nitrite levels, the use of 150 ppm nitrate did not negatively affect the color of pastırma. However, the levels of volatile compounds decreased with an increasing level of nitrate. Conclusion: The use of 600 ppm nitrate is not a risk in terms of residual nitrite in pastırma produced under controlled condition, however, this level is not suitable due to decrease in the amount of volatile compounds.

Identification of Volatile Essential Oil, and Flavor Characterization and Antibacterial Effect of Fractions from Houttuynia cordata Thunb -I. Identification of Volatile Essential Oil Compounds from Houttuynia cordata Thunb -I. Identification of Volatile Essential Oil Compounds from Huttuynia cordata Thunb- (어성초 휘발성 정유성분의 동정과 분획물의 향특성 및 항균활성 -I. 어성초의 휘발성 정유성분의 동정-)

  • Kang, Jung-Mi;Cha, In-Ho;Lee, Young-Kuen;Ryu, Hong-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.209-213
    • /
    • 1997
  • Since Houttuynia cordata is well known as a medicinal herb, due to its antibacterial activity on various microorganisms, present investigation was performed to identify the flavor compounds for volatile essential oil. Volatile essential oil was collected by simultaneous distillation-extraction(SDE), and then the oil components were separated on HP-5 capilliary column$(25m{\times}0.25mm\; i.d.)$ and identified those components by GC-MS. Fifty two compounds were isolated from the volatile essential oil of Houttuynia cordata and forty four were positively identified by GC-MS. The volatile compounds were composed mainly of terpenoids(25 classes), aldehydes(7 classes), alcohols(4 classes), ketones(3 classes), acids(1 class) and miscellaneous compounds(4 classes). Of these, the major compounds were ${\beta}-myrcene$, ${\beta}-ocimene$, decanal, 2-undecanone and geranyl propionate.

  • PDF

Comparison of Volatile Aroma Compounds between Synurus deltoides and Aster scaber Leaves (수리취와 참취 엽의 휘발성 향기성분 비교)

  • Lee, Kyeong-Cheol;Sa, Jou-Young;Wang, Myeong-Hyeon;Han, Sang-Sup
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.1
    • /
    • pp.54-62
    • /
    • 2012
  • This study was investigated to compare the volatile aroma compounds of Synurus deltoides and Aster scaber. The volatile aroma compounds from Synurus deltoides and Aster scaber were extracted by soild-phase microextraction (SPME) methods. S. deltoides had 97 volatile aroma compounds such as including 5-acetyl-1,2-dihydro acenaphtylene (14.63%), ${\beta}$-cubebene (9.31%), caryophyllene (8.97%), ${\beta}$-chamigrene (7.14%), ${\beta}$-selinene (2.71), ${\alpha}$-farnesene (2.47%), ${\alpha}$-bergamotene (2.26%), ${\beta}$-elemene (1.94%), etc. A. scaber had 84 volatile aroma compounds such as (+)-epi-bicyclosesquiphellandrene (10.38%), terpinolen (10.09%), caryophyllene (6.04%), 8-isopropenyl-1,5-dimethyl-1,5-cyclodeca diene (5.42%), ${\alpha}$-himachalene (5.04%), ${\beta}$-thujene (4.37%), ${\beta}$-pinene (4.28%), ${\beta}$-cubebene (3.99%), etc. Conclusively, the main common volatile aroma compounds in S. deltoides and A. scaber leaves were 19 volatile aroma compounds such as caryophyllene, terpinolen, ${\beta}$-cubebene. But the composition and amount of volatile aroma compounds were very different between the two species.

Comparison of the volatile flavor compounds in different tobacco types by different extraction methods (추출방법에 따른 잎담배 종류별 휘발성 향기성분 특성비교)

  • Lee, Jang-Mi;Lee, Jeong-Min;Lee, Chang-Gook;Bock, Jin-Young;Hwang, Keon-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.32 no.2
    • /
    • pp.77-87
    • /
    • 2010
  • Traditional simultaneous distillation extraction(SDE) and solid-phase micro extraction(SPME) methods using GC/MS were compared for their effectiveness in the extraction of volatile flavor compounds from different tobacco leaves types(flue-cured, burley, oriental). The major volatile flavor compounds of flue-cured and burley tobacco were similar such as neophytadiene, solanone, megastigmatrienone isomers, ${\beta}$-damascenone and ${\beta}$-ionone. On the other hand, volatile flavor compounds such as norambreinolide, sclareolide were specifically identified in oriental tobacco. Each method was used to evaluate the responses of some analytes from real samples and standards in order to provide sensitivity comparisons between two techniques. Among three types of SPME fibers such as PDMS(Polydimethylsiloxane), PA(Polyacrylate) and PDMS/DVB (Polydimethylsiloxane/Divinylbenzene) which were investigated to determine the selectivity and adsorption efficiency, PDMS/DVB fiber was selected for the extractions of the volatile flavor compounds due to its effectiveness. The qualitative analysis showed that the total amount of volatile flavor compounds in SDE method(130 species) was much more than that in SPME method(85 species). SPME method was more efficient for all the highly volatile compounds than SDE method, but on the other hand, low-volatile compounds such as fatty acids or high-molecular hydrocabons were detected in SDE method. SPME method based on a short-time sampling can be adjusted to favor a selected group compounds in tobacco. Furthermore this results could be used to estimate the aroma characteristics of cigarette blending by using a different type of tobacco with more effectiveness and convenience.

Effects of Starter Candidates and NaCl on the Production of Volatile Compounds during Soybean Fermentation

  • Jeong, Do-Won;Lee, Hyundong;Jeong, Keuncheol;Kim, Cheong-Tae;Shim, Sun-Taek;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.191-199
    • /
    • 2019
  • We inoculated different combinations of three starter candidates, Bacillus licheniformis, Staphylococcus succinus, and Tetragenococcus halophilus, into sterilized soybeans to predict their contributions to volatile compound production through soybean fermentation. Simultaneously, we added NaCl to soybean cultures to evaluate its effect on the volatile compounds profile. Cells in soybean cultures (1.5% NaCl) nearly reached their maximum growth in a day of incubation, while cell growth was delayed by increasing NaCl concentrations in soybean cultures. The dominance of B. licheniformis and S. succinus in the mixed cultures of three starter candidates switched to T. halophilus as the NaCl concentration increased from 1.5% to 14% (w/w). Seventeen volatile compounds were detected from the control and starter candidate-inoculated soybean cultures with and without the addition of NaCl. Principal component analysis of these volatile compounds concluded that B. licheniformis and S. succinus made major contributions to producing a specific volatile compound profile from soybean cultures where both species exhibited good growth. 3-Hydroxybutan-2-one, butane-2,3-diol, and 2,3,5,6-tetramethylpyrazine are specific odor notes for B. licheniformis, and 3-methylbutyl acetate and 2-phenylethanol are specific for S. succinus. Octan-3-one and 3-methylbutan-1-ol were shown to be decisive volatile compounds for determining the involvement of S. succinus in the soybean culture containing 7% NaCl. 3-Methylbutyl acetate and 3-methylbutan-1-ol were also produced by T. halophilus during soybean fermentation at an appropriate level of NaCl. Although S. succinus and T. halophilus exhibited growth on the soybean cultures containing 14% NaCl, species-specific volatile compounds determining the directionality of the volatile compounds profile were not produced.

A Comparison the Volatile Aroma Compounds between Ligularia fischeri and Ligularia fischeri var. spiciformis Leaves (곰취와 한대리곰취의 휘발성 향기성분 분석)

  • Han, Sang-Sup;Sa, Jou-Young;Lee, Kyeong-Cheol
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.3
    • /
    • pp.209-217
    • /
    • 2010
  • The volatile aroma of fresh leaves is one of main factor in taste of all the edible green plants. The volatile aroma in almost edible green leaves are suggested as essential oil compounds. Ligularia fischeri, Synurus deltoides, Ligularia fischeri var. spiciformis and Aster scaber are one of the favourable edible green plants in Korea. In this study, volatile aroma compounds from Ligularia fischeri and Ligularia fischeri var. spiciformis species were analyzed by the SPME/GC/MSD method. Ligularia fischeri had 78 volatile aroma compounds such as D-limonene(20.28%), ${\alpha}$-pinene(dextro, 14.15%), L-${\beta}$-pinene(12.85%), 3-carene, ${\beta}$-cubebene(10.39%), etc. Ligularia fischeri var. spiciformis had 83 volatile aroma compounds such as D-limonene(36.97%), ${\beta}$-cubebene(13.95%), L-${\beta}$-pinene(13.38%), ${\alpha}$-pinene(dextro, 4.76%), caryophylle-ne(3.33%) etc. Conclusively, the commom volatile aroma compounds in Ligularia fischeri and Ligularia fischeri var. spiciformis leaves were D-limonene, ${\alpha}$-pinene, L-${\beta}$-pinene, ${\beta}$-cubebene, Caryophyllene, ${\alpha}$-farnesene, terpinolen. However, the composition and amount of volatile aroma compounds were very different between the two species.

The Global Volatile Signature of Veal via Solid-phase Microextraction and Gas Chromatography-mass Spectrometry

  • Wei, Jinmei;Wan, Kun;Luo, Yuzhu;Zhang, Li
    • Food Science of Animal Resources
    • /
    • v.34 no.5
    • /
    • pp.700-708
    • /
    • 2014
  • The volatile composition of veal has yet to be reported and is one of the important factors determining meat character and quality. To identify the most important aroma compounds in veal from Holstein bull calves fed one of three diets, samples were subjected to solid-phase microextraction (SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-MS). Most of the important odorants were aldehydes and alcohols. For group A (veal calves fed entirely on milk for 90 d before slaughter), the most abundant compound class was the aldehydes (52.231%), while that was alcohols (26.260%) in group C (veal calves fed starter diet for at least 60 d before slaughter). In both classes the absolute percentages of the volatile compounds in veal were different indicating that the veal diet significantly (p<0.05) affected headspace volatile composition in veal as determined by principal component analysis (PCA). Twenty three volatile compounds showed significance by using a partial least-squared discriminate analysis (PLS-DA) (VIP>1). The establishment of the global volatile signature of veal may be a useful tool to define the beef diet that improves the organoleptic characteristics of the meat and consequently impacts both its taste and economic value.

Characteristics of Volatile Components from Magnolia ovobata Thunb. by Different Analysis Methods

  • Chung, Hae-Gon;Bang, Jin-Ki;Kim, Geum-Soog;Seong, Nak-Sul;Cho, Joon-Hyeong;Kim, Seong-Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.2
    • /
    • pp.102-107
    • /
    • 2004
  • This study was carried out to establish an optimum method for identifying the volatile components of Magnolia ovobata Thunb. using the dynamic headspace (Purge & Trap) and simultaneous distillation and extraction (SDE) method. Between the two different identification analysis, the volatile components were more easily detected in the SDE than the Purge & Trap method. Among the identified volatile components, the 12 compounds were detected to have similar retention times and match quality within the 45 minutes in both identification methods. The maximum values of the major volatile components were detected differently by SDE and (Purge & Trap) method such as ${\alpha}-pinene$ (3.4, 18.2%), ${\beta}-pinene$ (3.5, 10.3%), l-limonene (5.2, 15.4%). These results indicated that the Dynamic Headspace (Purge & Trap) was much more reliable method for identifying the volatile components of Magnolia ovobata Thunb. as compared to the SDE method.

Volatile Flavor Composition of White-flowered Lotus by Solid-phase Microextraction (Solid-Phase Microextraction에 의한 백련의 휘발성 향기 성분 분석)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.2
    • /
    • pp.363-370
    • /
    • 2017
  • This study investigated the chemical composition of headspace gas from white-flowered lotus (Nelumbo nucifera Gaertner). Volatile flavor compositions of headspace from white-flowered lotus (floral leaf, stamen, flower stalk, stem) were investigated through the solid-phase microextraction method using polydimethylsiloxane-divinylbenzene fiber. The headspace was directly transferred to a gas chromatography-mass spectrometry. Sixty-three volatile flavor constituents were detected in the headspace of lotus floral leaves, and undecanoic acid (7.81%) was the most abundant component. Fifty-three volatile flavor constituents were detected in the headspace of lotus stamina, and isobutylidene phthalide (7.94%) was the most abundant component. Forty-four volatile flavor constituents were detected in the headspace of lotus flower stalks, and 3-butyl dihydrophthalide (11.23%) was the most abundant component. Fifty-nine volatile flavor constituents were detected in the headspace of lotus stems, and ligustilide (16.15%) was the most abundant component. The content of phthalides was higher in the headspace of flower stalks and stems, while alcohols and acids were the predominant compounds in lotus floral leaves.

Effect of Refrigerated and Thermal Storage on the Volatile Profile of Commercial Aseptic Korean Soymilk

  • Kim, Hun;Cadwallader, Keith R.;Jeong, Eun-Jeong;Cha, Yong-Jun
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.1
    • /
    • pp.76-85
    • /
    • 2009
  • This study determined the effect of refrigerated and thermal storage on the volatile profile of commercial aseptic soymilk. Volatile components in commercial aseptic soymilk stored either under refrigerated ($4^{\circ}C$) or thermal ($55^{\circ}C$) conditions for 30 days were periodically analyzed by combined solvent-assisted flavor evaporation-gas chromatography-mass spectrometry (SAFE-GC-MS). The concentrations of most of the volatile components, including aldehydes, ketones, alcohols, acids, nitrogen- and sulfur-containing compounds, alkylfurans, furan derivatives and phenolic compounds, were affected to a greater extent by thermal storage compared with refrigerated storage. Profound increases in some volatile compounds with low odor detection thresholds, such as hexanal, octanal, (E)-2-octenal, (E,E)-2,4-decadienal, 1-octen-3-ol, 3-ethyl-2,5-dimethylpyrazine, 2,3-diethyl-5-methylpyrazine, 2-pentylfuran, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, dimethyl trisulfide, guaiacol, 4-vinylguaiacol and 4-vinylphenol, were observed in thermal stored soymilk. The volatile profile changes caused by thermal storage may influence the aroma quality of thermal-stored aseptic soymilk.