• Title/Summary/Keyword: Vol-oxidizer

Search Result 14, Processing Time 0.036 seconds

A Study on the Design Considerations of Vol-Oxidizer for High-Capacity Uranium Dioxide Pellets (대용량 우라늄디옥사이드 펠릿 산화를 위한 공기산화로의 설계 고려사항에 대한 연구)

  • Jung, Jae-Hoo;Lee, Hyo-Jik;Park, Byung-Suk;Yoon, Ji-Sup;Kim, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.472-482
    • /
    • 2007
  • This study deals with the design and implementation results for a high-capacity vol-oxidizer that can convert Uranium Dioxide pellets to $U_3O_8$ powder for up to several tens of kg HM/batch. We developed two versions of the $1^{st}$ vol-oxidizer and the $2^{nd}$ vol-oxidizer. Through an experiment with the $1^{st}$ vol-oxidizer, we deduced some problems concerning the design considerations such as the recovery rate of $U_3O_8$, the oxidation time of the Uranium Dioxide pellets, the exothermic reaction, and the powder dispersion. From the analyses of the drawbacks of the $1^{st}$ vol-oxidizer, we devised some novel items such as a folding type mesh, vibrators, and mixing blades. Also, we used the Stokes and Density ratio Eq. to determine the most reasonable flux for preventing a powder dispersion. Compared with the results of the $1^{st}$ vol-oxidizer, we showed that both the permeability of the $U_3O_8$ powders and the oxidation rate of the Uranium Dioxide pellets of the $2^{nd}$ vol-oxidizer were remarkably increased, and the temperature of the reactor was controlled well in spite of an exothermic reaction. Also, the powder was not entirely dispersed through the outlet of the voloxidizer. The experimental results of this work can help in the design of a novel and efficient vol-oxidizer with a higher capacity.

Thermal Stress Analysis of Spent Fuel Vol-oxidizer Furnace on the Internal Pressure (내부 압력변화에 대한 사용후핵연료 분말화장치 가열로의 열 응력 해석)

  • Kim, Y.H.;Jung, J.H.;Hong, D.H.;Park, B.S.;Lee, J.K.;Yoon, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.136-140
    • /
    • 2006
  • We are developing a vol-oxidizer which transforms the spent $UO_2$ pellets into the $U_3O_8$ power through oxidizing process. The vol-oxidizer consists of furnace, filter, heater and valve etc. When the filter is blocked by the powder, the internal pressure of the furnace is increased owing to the air flow restriction. Then, the furnace vessel is swelled and deformed by it. In this paper, we proposed a procedure of the thermal analysis for furnace vessel design of spent fuel vol-oxidizer. In this work, we determined the thickness of the furnace through analyzing the internal pressure and the thermal stress of the furnace with respect to various pressure and temperature. To analyze the thermal stress, we used ANSYS 8.0 for constructing a FEM model of the furnace, and then analyzed it based on the ASME code. We also surveyed the material property and yield stress of SUS304 with various temperature. Analysis results are compared with the yield stress of the material. We manufactured the furnace and conduct the verification experiments.

  • PDF

A Study on a Fabrication of simulated Fuels for a design of a High-Capacity Vol-oxidizer (대용량 사용후핵연료 공기산화로 설계를 위한 모의연료 제조연구)

  • Hwang, J.S.;Won, J.H.;Kim, Y.H.;Jung, J.H.;Yoon, K.H.;Park, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.488-490
    • /
    • 2008
  • This study aims to design the high-capacity vol-oxidizer using simulated fuels instead of spent nuclear fuels. Simulated fuels are fabricated by blending tungsten powder with silicon carbide powder, and thereafter, paraffin coating covers simulated fuels to increase their strength. An oxidation experiment using simulated fuels have been carried out in order to analyze oxidation characteristics similar to spent fuels. After oxidation, simulated fuels were almost oxidized to be powders. Increased volume of simulated fuels approached to spent fuels. These results can be utilized as important informations for designing a high-capacity vol-oxidizer.

  • PDF

Manufacture of the vol-oxidizer with a capacity of 20 kg HM/batch in $UO_2$ pellets using a design model (설계 모델을 이용한 $UO_2$ 펠릿 20 kg HM/batch용 분말화 장치 제작)

  • Kim Young-Hwan;Yoon Ji-Sup;Jung Jae-Hoo;Hong Dong-Hee;Uhm Jae-Beop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.255-263
    • /
    • 2006
  • Vol-oxidizer is a device to convert $UO_2$ pellets into $U_3O_8$ powder and to feed a homogeneous powder into a Metal Conversion Reactor in the ACP(Advanced Spent Fuel Conditioning Process). In this paper, we propose a design model of the vol-oxidizer, develop the new vol-oxidizer with a capacity of 20 kg HM/batch in $UO_2$ pellets, and conduct a verification for the device. Design considerations include the internal structure, the capacity, the heating position of the device, and the size. The dimensions of the new vol-oxidizer are decided by the design model. We determine a permeability test of the $U_3O_8$ measuring the temperature distribution, and the volume of $UO_2$ and $U_3O_8$. We manufactured the new vol-oxidizer for a 20 kg HM/batch in $UO_2$ pellets, and then analyzed the characteristics of the $U_3O_8$ powder for the verification. The experimental results show that the permeability of the $U_3O_8$ throughout mesh enhance more than old vol-oxidizer, the oxidation time takes only 8 hours when compared with the 13 hours of the old device, and the average distribution of particle size is $40{\mu}m$. The capacities of new vol-oxidizer for a 20 kg HM/batch in $UO_2$ pellets were agree well with the predictions of design model.

  • PDF

Planarization Characteristics of CMP for WO3 Film with an Addition of Oxidizers (산화제 첨가에 따른 WO3 박막의 CMP 평탄화 특성)

  • Lee, Woo-Sun;Ko, Pil-Ju;Kim, Nam-Hoon;Seo, Yong-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.12-16
    • /
    • 2005
  • Chemical mechanical polishing (CMP) process is one of the most useful methods for improving the surface roughness of films. The effects of CMP on the surface morphology of WO$_3$ films prepared by RF sputtering system were investigated in this paper. A removal rate of films increased, and the uniformity performance of surface decreased with the addition of an oxidizer to the tungsten slurry. Non-uniformity performance of surface was superior as its value was below 5 % when oxidizers of 5.0 vol% and 2.5 vol%, respectively, were added to the tungsten slurry. The optimized oxidizer concentration, reflected both the improved roughness values and hillock-free surface with the good uniformity performance, was 5.0 vol% as an atomic force microscopy(AFM) analysis of thin film topographies. Our CMP results will be a useful reference for advanced technology of thin films for gas sensor applications in the near future.

Preparation of α-Al2O3 Nanoparticles by flame Spray Pyrolysis (ESP) of Microemulsion (마이크로에멀전의 화염분무열분해(ESP)에 의한 α-알루미나 나노입자의 제조)

  • 이상진;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.242-246
    • /
    • 2004
  • Nano-sized a-alumina with a narrow distribution was prepared by using Flame Spray Pyrolysis (FSP). The microemulsion of water in oil (W/O) was prepared to make ultrafine droplets for FSP process. Kerosene (fuel) as a continuos phase and Al(NO$_3$)$_3$$.$9$H_2O$ (oxidizer) aqueous solution as a dispersed phase were prepared for microemulsification. The microemulsion with dispersion stability was obtained by adjusting the composition of 80 vol% kerosene, 10 vol% aqueous solution, and 10 vol% emulsifying agent. Microemulsion was sprayed onto the flame by using two-fluid nozzle spray gun under the condition of 0.03 ㎫ air pressure. The synthesized products were $\alpha$-alumina phase with the size of 20 to 30 nm.