• Title/Summary/Keyword: Void Size

Search Result 290, Processing Time 0.031 seconds

A Study on Simulation of Cavity and Relaxation Zone Using Laboratory Model Test and Discrete Element Method (실내모형실험과 개별요소법을 이용한 지반 공동 및 이완영역 모사에 관한 연구)

  • Kim, Joo-Bong;You, Seung-Kyong;Han, Jung-Geun;Hong, Gi-Gwon;Park, Jong-Beom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.11-21
    • /
    • 2017
  • Ground subsidence mainly occurs due to the soil wash-away caused by cracked sewer pipes. It is necessary to understand the behavior surrounding soils with the formation of cavity and relaxation zone to set up counterplan. In this paper, a series of laboratory model tests and numerical analyses (Discrete Element Method) were performed to investigate the ground subsidence mechanism due to sewer pipe damage. For model tests, aluminum rod and trap door were used to simulate the behavior of model ground. Test results were compared with the numerical analyses conducted under the same boundary conditions with model tests. From this study, it was investigated the shape and size of cavity and relaxation zone due to the soil wash-away and a void ratio distribution of surrounding soils with relaxation properties.

Outcome of 980 nm diode laser vaporization for benign prostatic hyperplasia: A prospective study

  • Mithani, M. Hammad;El Khalid, Salman;Khan, Shariq Anis;Sharif, Imran;Awan, Adnan Siddiq;Mithani, Shoaib;Majeed, Irfan
    • Investigative and Clinical Urology
    • /
    • v.59 no.6
    • /
    • pp.392-398
    • /
    • 2018
  • Purpose: To evaluate the initial experience and outcome of photo-selective vaporization of the prostate (PVP) for benign prostatic hyperplasia (BPH) in Pakistan with the use of a 980 nm diode laser. Materials and Methods: A prospective study was performed from November 2016 to December 2017. A total of 100 patients diagnosed with bladder outlet obstruction secondary to BPH who planned for PVP were enrolled in the study. PVP was carried out with a diode laser at 980 nm (Biolitec Diode 180W laser) in a continuous wave with a 600 nm (twister) fiber. Baseline characteristics and perioperative data were compared. Postoperative outcomes were evaluated by International Prostate Symptom Score (IPSS), post void residual (PVR) and maximum urinary flow rate (Qmax) at 3 and 6 months after surgery. Results: The mean age was $65.82{\pm}10.42$, mean prostate size was $67.35{\pm}16.42$, operative time was $55.85{\pm}18.01$ and total energy was $198.68{\pm}49.12kJ$. At 3 months and 6 months, significant improvements were noted (p<0.001) in IPSS $7.04{\pm}1.69$ (-18.92), Qmax $19.22{\pm}4.75mL/s$ (+13.09) and and PVR $18.89{\pm}5.39mL$ (-112.80). Most frequent problems were burning micturition (35%) and terminal dysuria (29%). No significant difference in postoperative hemoglobin was seen in patients who were on anti-platelet drugs. Conclusions: PVP with a diode laser is a safe and effective procedure for the treatment of BPH and is also safe in patients who are on anti-platelet agents.

Evaluation on Cavity Expansion under Pavement based on Groundwater Injection test (지하수 주입실험을 통한 도로노면 하부의 공동 확장 평가)

  • Park, Jeong-Jun;You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.79-88
    • /
    • 2019
  • This study described a results of groundwater injection test in cavity, in order to evaluate characteristics of cavity expansion under pavement. That is, groundwater amount proportional to the cavity volume was injected into the generated cavity step by step, and then the cavity with the changed size was monitored as the injected groundwater was drained. The test result showed that the cavity volume by groundwater injection increased, and then it converged or decreased. This means that some of the relaxation soil around the cavity collapsed, and the fine-grained soils in some soils filled the void in the surrounding soils when the cavity is expanded by groundwater injection. The volume change and expansion characteristics of the cavity according to the groundwater injection step were analyzed. The result showed that the cavity extended laterally. Therefore, it was found that the cavity expansion is caused by the repetition of the relaxation soil collapse due to the groundwater flow and the loss of the collapsed soil below the cavity.

Effect of Non-Metallic Inclusions and Hot Rolling Process Parameters on Hydrogen Induced Cracking of Linepipe Steels (라인파이프 강재의 수소유기균열에 미치는 열간압연 공정변수의 영향)

  • Koh, Seong Ung;Jung, Hwan Gyo;Kang, Ki Bong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.257-266
    • /
    • 2008
  • AHydrogen induced cracking (HIC) was phenomenologically studied in terms of the effect of nonmetallic inclusions and hot rolling process parameters. By comparing the level of non-metallic inclusions in two different kinds of commercial grade steels having different HIC resistance, the role of non-metallic inclusions in HIC occurrence was investigated. Change in inclusion morphology and distribution during hot rolling was also studied throughout slab, rolling at austenite recrystallization region (roughing mill; RM) and rolling at austenite non-recrystallization region (finish mill; FM). In addition, the contribution of RM and FM parameters to HIC was investigated from the standpoint of change in inclusion morphology during hot rolling processes. As a result, HIC was closely related to the separation of large complex inclusion during hot rolling process. Large complex inclusions originated from the improper Ca treatment, after which equilibrium composition of slag should have resulted in eutectoid composition. By controlling the equilibrium slag composition equivalent to eutectoid one, HIC resistance could be improved due to the reduced size of inclusions. In addition, change in reduction/pass in RM had an effect on HIC resistance of steels while that in FM did not. Increase in the reduction/pass in the latter stage of RM improved HIC resistance of steels by enhancing the void enclosure around inclusions.

Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study

  • Bahrami, Mehdi;Karimi-Sabet, Javad;Hatamnejad, Ali;Dastbaz, Abolfazl;Moosavian, Mohammad Ali
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2241-2255
    • /
    • 2018
  • RSM methodology was applied to present mathematical models for the fabrication of polyvinylidene fluoride (PVDF) dual-layer hollow fibers in membrane distillation process. The design of experiments was used to investigate three main parameters in terms of polymer concentration in both outer and inner layers and the flow rate of dope solutions by the Box-Behnken method. According to obtained results, the optimization was done to present the proper membrane with desirable properties. The characteristics of the optimized membrane (named HF-O) suggested by the Box-Behnken (at the predicted point) showed that the proposed models are strongly valid. Then, a morphology study was done to modify the fiber by a combination of three types of a structure such as macro-void, sponge-like and sharp finger-like. It also improved the hydrophobicity of outer surface from 87 to $113^{\circ}$ and the mean pore size of the inner surface from 108.12 to 560.14 nm. The DCMD flux of modified fiber (named HF-M) enhanced 62% more than HF-O when it was fabricated by considering both of RSM and morphology study results. Finally, HF-M was conducted for long-term desalination process up to 100 hr and showed stable flux and wetting resistance during the test. These stepwise approaches are proposed to easily predict the main properties of PVDF dual-layer hollow fibers by valid models and to effectively modify its structure.

Performances of Prepacked-Type Thermal Conductive Backfills Incorporating Byproduct Powders and Aggregates (부산물 분체 및 굵은 골재를 활용한 프리팩트형 열전도성 되메움재의 성능)

  • Sang-Min Jeon;Young-Sang Kim;Ba-Huu Dinh;Jin-Gyu Han;Yong-Sun Ryu;Hyeong-Ki Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • This study aims to develop a thermally conductive backfill by applying the prepacked concrete concept, in which a coarse aggregate with relatively high thermal conductivity was first filled and then the voild filled with grout. Backfill with improved thermal conductivity can increase the heat exchange efficiency of underground heat exchangers or underground transmission facilities. The backfills was prepared by using crushed concrete as the coarse aggregate, fly ash-based grout, and a small amount of cement for solidification. The results of this study showed that the fly ash-cement-sand-based grout with a flow of at least 450 mm accor ding to ASTM D 6103 could fill the void of pr epactked coar se aggr egates with a maximum size of 25 mm. The thermal conductivity of the backfil with coarse aggregate was over 1.7 W/m·K, which was higher than that of grout-type backfills.

Machine Learning Framework for Predicting Voids in the Mineral Aggregation in Asphalt Mixtures (아스팔트 혼합물의 골재 간극률 예측을 위한 기계학습 프레임워크)

  • Hyemin Park;Ilho Na;Hyunhwan Kim;Bongjun Ji
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.1
    • /
    • pp.17-25
    • /
    • 2024
  • The Voids in the Mineral Aggregate (VMA) within asphalt mixtures play a crucial role in defining the mixture's structural integrity, durability, and resistance to environmental factors. Accurate prediction and optimization of VMA are essential for enhancing the performance and longevity of asphalt pavements, particularly in varying climatic and environmental conditions. This study introduces a novel machine learning framework leveraging ensemble machine learning model for predicting VMA in asphalt mixtures. By analyzing a comprehensive set of variables, including aggregate size distribution, binder content, and compaction levels, our framework offers a more precise prediction of VMA than traditional single-model approaches. The use of advanced machine learning techniques not only surpasses the accuracy of conventional empirical methods but also significantly reduces the reliance on extensive laboratory testing. Our findings highlight the effectiveness of a data-driven approach in the field of asphalt mixture design, showcasing a path toward more efficient and sustainable pavement engineering practices. This research contributes to the advancement of predictive modeling in construction materials, offering valuable insights for the design and optimization of asphalt mixtures with optimal void characteristics.

Analysis of Soil Characteristics and its Relationship According to the Geological Condition in Natural Slopes of the Landslide Area (산사태지역 자연사면의 지질별 토질특성 및 상관관계 분석)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.205-215
    • /
    • 2007
  • In this study, the soil characteristics are analyzed using the result of various soil tests as an object of the soil layer of natural slopes in landslides areas. Also, the relationship with landslides and interrelation with each soil properties are analyzed. The landslides in three areas with different geological condition are occurred due to heavy rainfall in same time. The geology of Jangheung area, Sangju area and Pohang area is gneiss, granite, and the tertiary sedimentary rock, respectively. However soil characteristics have a little differentiation to geological condition, the soils sampled from landslide area have higher proportion of fine particle and porosity, and lower density than those from non landslide area. In case of same geological condition, landslides are occurred in the terrain slope with high permeability. The permeability is mainly influenced by the soil characteristics such as particle size distribution, porosity, particle structure, and the geological origins such as weathering, sedimentary environment. The soil layer with high internal friction angle is more stable than that with low internal friction angle in all geological condition. The permeability is mainly influenced by effective particle size, coefficient of uniformity, coefficient of gradation, porosity, density and so on. Also, those have interrelation with each factor. These interrelations are similar in all study area. Meanwhile, in proportion as the void ratio and the porosity rises the permeability increases.

Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density (저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합)

  • Lee, Chae-Rin;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF

Characteristics Analysis of Mudstone Weathered Soils in the landslide Area using Statistical Technique (통계기법에 의한 산사태발생지역 이암 풍화토층의 토질특성 분석)

  • Hwang, Eui-Soon;Chung, Dae-Seouk;Kim, Kyeong-Su;Lee, Moon-Se;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.31-41
    • /
    • 2013
  • In this study, the properties of mudstone weathered soils related to landslides were analyzed at the area of landslide induced by heavy rainfall in Pohang. The soil tests were carried out to the soils obtained from landslide and non landslide sites, and the soil properties were investigated. The correlation between soil properties and landslides were analyzed using statistical technique, and then the soil factors were extracted from the correlation analysis. The correlation equation which can calculate the coefficient of permeability influenced on landslides was proposed using the soil factors. As the result of analysis, the porosity and unit weight of soils from the landslide area is smaller than those of soils from the non landslide area. The soils with poor grain size distribution and loose unit weight are prone to landslides because the soils have a large void ratio and a low unit weight. The permeability of soils from the landslide area is larger than that of soils from the non landslide area. According to the result of correlation analysis, the effective grain size, the saturated unit weight and silt and clay contents are evaluated as the influence factors. These factors were considered to estimate the coefficient of permeability of mudstone weathered soils.