• Title/Summary/Keyword: Void

Search Result 2,130, Processing Time 0.032 seconds

Performance Evaluation of Porous Hwang-toh Concrete Using Blast Furnace Slag Cement (고로슬래그시멘트를 사용한 다공성 황토콘크리트의 성능 평가)

  • Kim, Hwang-Hee;Kang, Su-Man;Park, Jong-Sik;Park, Sang-Woo;Jeon, Ji-Hong;Lee, Jin-Hyung;Cha, Sang-Sun;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.9-17
    • /
    • 2010
  • This study aims to evaluate a porous concrete using hwang-toh, blast furnace slag and blast furnace slag (BFS) cement instead of type I cement. The tests that were carried out to analysis the properties of porous hwang-toh BFS cement concrete included compressive strength, continuous void ratio, absorption rate, and pH value, repeated freezing and thawing test were conducted. Test results indicated that the performance in porous hwang-toh concrete are effective on the kaoline based binder materials. The pH value were shown in about 9.5 ~ 8.5. The compressive strength was increased and void ratio was decreased with increasing the kaoline based binder materials, respectively. The void ratio and compressive strength were in the range of about 21 ~ 30 %, 8 ~ 13 MPa, respectively. The increased in void ratio of more than 25 % is showed to reduce the resistance of repeated freezing and thawing. Also, the resistance of repeated freezing of thawing and the compressive strength of porous hwang-toh BFS cement concrete are independent with hwang-toh content and BFS cement amount. But, the void ratio was decreased with increasing the high volume hwang-toh contents (more than 15 %).

In vitro Estimation of The Hounsfield Units and The Volume and Void of Canine Struvite Stones as Predictors of Fragility in Extracorporeal Shock Wave Lithotripsy

  • Wang, Ji-hwan;Hwang, Tae-sung;Jung, Dong-in;Yeon, Seong-chan;Lee, Hee-chun
    • Journal of Veterinary Clinics
    • /
    • v.34 no.3
    • /
    • pp.178-184
    • /
    • 2017
  • The aim of this study was to determine whether Hounsfield units (HUs), volume, and various void parameters can predict stone fragility in extracorporeal shock wave lithotripsy (ESWL). HU, volume, porosity, number of voids/stone volume, and void distribution of 30 struvite stones were estimated using helical computed tomography (CT) and micro-CT. The number of shock waves necessary for full fragmentation was accepted as a measure of the stone fragility in ESWL. The correlations between the number of shock waves and the HU, volume, porosity, and number of voids/stone volume were examined. The number of shock waves of the two groups according to the void distribution was also compared. Stone volume correlated with the number of shock waves. Shell-patterned struvite stones were significantly less susceptible to fragmentation in ESWL than non-shell-patterned struvite stones. Stone volume and void distribution may be predictors of the outcome of ESWL treatment.

The Prediction of Void Fraction in the Subcooled Boiling Region (서브쿨드 비등 영역에서의 기포계수 계산에 관한 연구)

  • Goon Cherl Park
    • Nuclear Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.195-201
    • /
    • 1984
  • A state-of-the-art mechanistic model has been developed to accurately predict the void fraction in the subcooled boiling region having axial nonuniform heat flux. In this study, the void-dependent drift-flux parameters of the Lahey/Ohkawa model were introduced and the mass flux-dependent condensation coefficient were determined by fitting with the experimental data. This model was tested against several experimental data sets to verify its accuracy. Finally the comparison between the predicted void fraction profiles with this model and the profile-fit model for the hot assembly of Kori-Unit 1, Cycle 1 has been performed. It is conclusive that the results show the good agreement between the measured and predicted void fractions, and the profile-fit model has been found to underestimate the void fraction in the subcooled boiling region.

  • PDF

Effects of fines content on void ratio, compressibility, and static liquefaction of silty sand

  • Lade, Poul V.;Yamamuro, Jerry A.;Liggio, Carl D. Jr.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • Many aspects of the behavior of sands are affected by the content of non-plastic fine particles and these various aspects should be included in a constitutive model for the soil behavior. The fines content affects maximum and minimum void ratios, compressibility, shear strength, and static liquefaction under undrained conditions. Twenty-eight undrained triaxial compression tests were performed on mixtures of sand and fine particles with fines contents of 0, 10, 20, 30, 50, 75, and 100% to study the effects of fines on void ratio, compressibility, and the occurrence of static liquefaction. The experiments were performed at low consolidation pressures at which liquefaction may occur in near-surface, natural deposits. The presence of fines creates a particle structure in the soil that is highly compressible, enhancing the potential for liquefaction, and the fines also alter the basic stress-strain and volume change behavior, which should be modeled to predict the occurrence of static liquefaction in the field. The void ratio at which liquefaction occurs for each sand/fines mixture was determined, and the variation of compressibility with void ratio was determined for each mixture. This allowed a relation to be determined between fines content, void ratio, compressibility, and the occurrence of static liquefaction. Such relations may vary from sand to sand, but the present results are believed to indicate the trend in such relations.

Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis

  • Park, Jinsu;Lee, Hyunsuk;Tak, Taewoo;Shin, Ho Cheol;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.6-16
    • /
    • 2017
  • This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the $2{\times}2$ checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case.

Finishing methods and compressive strength-void ratio relationships of in-situ porous concrete pavement

  • Hatanaka, Shigemitsu;Mishima, Naoki;Nakagawa, Takeshi;Morihana, Hirotomo;Chindaprasirt, Prinya
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.231-240
    • /
    • 2012
  • In this paper, the effect of finishing methods on the relationships between compressive strength, permeability and void ratio of porous concrete (POC) or pervious concrete is discussed, using core specimens taken from actually constructed POC pavement. To attain reliable performance in the construction work, a newly designed finisher for POC is developed, and the performances as well as methods for controlling void ratio are examined. The POC pavements were finished with three finishing methods viz., no finishing, finishing with standard compactor and finishing with prototype compactor. The results show that the prototype POC finisher is efficient in controlling the void ratio and the quality of POC pavements. The relationships between compressive strength as well as permeability and void ratio of the in-situ POC pavements finished by the prototype machine were obtained. They are slightly different from the laboratory test results owing mainly to the mold effect and the differences in compaction modes.

AN IMPROVED ELECTRICAL-CONDUCTANCE SENSOR FOR VOID-FRACTION MEASUREMENT IN A HORIZONTAL PIPE

  • KO, MIN SEOK;LEE, BO AN;WON, WOO YOUN;LEE, YEON GUN;JERNG, DONG WOOK;KIM, SIN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.804-813
    • /
    • 2015
  • The electrical-impedance method has been widely used for void-fraction measurement in two-phase flow due to its many favorable features. In the impedance method, the response characteristics of the electrical signal heavily depend upon flow pattern, as well as phasic volume. Thus, information on the flow pattern should be given for reliable void-fraction measurement. This study proposes an improved electrical-conductance sensor composed of a three-electrode set of adjacent and opposite electrodes. In the proposed sensor, conductance readings are directly converted into the flow pattern through a specified criterion and are consecutively used to estimate the corresponding void fraction. Since the flow pattern and the void fraction are evaluated by reading conductance measurements, complexity of data processing can be significantly reduced and real-time information provided. Before actual applications, several numerical calculations are performed to optimize electrode and insulator sizes, and optimal design is verified by static experiments. Finally, the proposed sensor is applied for air-water two-phase flow in a horizontal loop with a 40-mm inner diameter and a 5-m length, and its measurement results are compared with those of a wire-mesh sensor.

DESIGN AND APPLICATION OF A SINGLE-BEAM GAMMA DENSITOMETER FOR VOID FRACTION MEASUREMENT IN A SMALL DIAMETER STAINLESS STEEL PIPE IN A CRITICAL FLOW CONDITION

  • Park, Hyun-Sik;Chung, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.349-358
    • /
    • 2007
  • A single-beam gamma densitometer is utilized to measure the average void fraction in a small diameter stainless steel pipe under critical flow conditions. A typical design of a single-beam gamma densitometer is composed of a sealed gammaray source, a collimator, a scintillation detector, and a data acquisition system that includes an amplifier and a single channel analyzer. It is operated in the count mode and can be calibrated with a test pipe and various types of phantoms made of polyethylene. A good average void fraction is obtained for a small diameter pipe with various flow regimes of the core, annular, stratified, and bubbly flows. Several factors influencing the performance of the gamma densitometer are examined, including the distance between the source and the detector, the measuring time, and the ambient temperature. The void fraction is measured during an adiabatic downward two-phase critical flow in a vertical pipe. The test pipe has an inner diameter of 10.9 mm and a thickness of 3.2 mm. The average void fraction was reasonably measured for a two-phase critical flow in the presence of nitrogen gas.

Energy efficient watchman based flooding algorithm for IoT-enabled underwater wireless sensor and actor networks

  • Draz, Umar;Ali, Tariq;Zafar, Nazir Ahmad;Alwadie, Abdullah Saeed;Irfan, Muhammad;Yasin, Sana;Ali, Amjad;Khattak, Muazzam A. Khan
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.414-426
    • /
    • 2021
  • In the task of data routing in Internet of Things enabled volatile underwater environments, providing better transmission and maximizing network communication performance are always challenging. Many network issues such as void holes and network isolation occur because of long routing distances between nodes. Void holes usually occur around the sink because nodes die early due to the high energy consumed to forward packets sent and received from other nodes. These void holes are a major challenge for I-UWSANs and cause high end-to-end delay, data packet loss, and energy consumption. They also affect the data delivery ratio. Hence, this paper presents an energy efficient watchman based flooding algorithm to address void holes. First, the proposed technique is formally verified by the Z-Eves toolbox to ensure its validity and correctness. Second, simulation is used to evaluate the energy consumption, packet loss, packet delivery ratio, and throughput of the network. The results are compared with well-known algorithms like energy-aware scalable reliable and void-hole mitigation routing and angle based flooding. The extensive results show that the proposed algorithm performs better than the benchmark techniques.

Comprehensive Analysis on Wrinkled Patterns Generated by Inflation and Contraction of Spherical Voids

  • Lim, Min-Cheol;Park, Jaeyoon;Jung, Ji-Hoon;Kim, Bongsoo;Kim, Young-Rok;Jeong, Unyong
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.651-658
    • /
    • 2018
  • We comprehensively investigated the wrinkles of a stiff layer covering a spherical void embedded in a rubber matrix after the void experienced inflation or contraction. We developed an easy experimental way to realize the inflation and contraction of the voids. The inflation took place in a void right beneath the surface of the matrix and the contraction happened in a void at the bottom of the rubber matrix. In the inflation, the wrinkle at the center of the deformation was random, and the pattern propagated into rabyrinthine, herringbone, and then oriented parallel lines as the position was away from the center of the inflation to the edge. The cracks were concentric, which were perpendicular to the parallel wrinkled pattern. In the contraction, the wrinkle was simply concentric around the surface of the void without any crack. The cracks were found only near the center of the deformation. The strain distribution in the stiff layer after the inflation and contraction was theoretically analyzed with simulations that were in excellent agreement with the experimental results.