DOI QR코드

DOI QR Code

In vitro Estimation of The Hounsfield Units and The Volume and Void of Canine Struvite Stones as Predictors of Fragility in Extracorporeal Shock Wave Lithotripsy

  • Wang, Ji-hwan (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Hwang, Tae-sung (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Jung, Dong-in (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Yeon, Seong-chan (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Hee-chun (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University)
  • Received : 2017.03.14
  • Accepted : 2017.06.11
  • Published : 2017.06.30

Abstract

The aim of this study was to determine whether Hounsfield units (HUs), volume, and various void parameters can predict stone fragility in extracorporeal shock wave lithotripsy (ESWL). HU, volume, porosity, number of voids/stone volume, and void distribution of 30 struvite stones were estimated using helical computed tomography (CT) and micro-CT. The number of shock waves necessary for full fragmentation was accepted as a measure of the stone fragility in ESWL. The correlations between the number of shock waves and the HU, volume, porosity, and number of voids/stone volume were examined. The number of shock waves of the two groups according to the void distribution was also compared. Stone volume correlated with the number of shock waves. Shell-patterned struvite stones were significantly less susceptible to fragmentation in ESWL than non-shell-patterned struvite stones. Stone volume and void distribution may be predictors of the outcome of ESWL treatment.

Keywords

References

  1. Adams LG, Senior DF. Electrohydraulic and extracorporeal shock-wave lithotripsy. Vet Clin North Am Small Anim Pract 1999; 29: 293-302. https://doi.org/10.1016/S0195-5616(99)50017-X
  2. Bandi G, Meiners RJ, Pickhardt PJ, Nakada SY. Stone measurement by volumetric three-dimensional computed tomography for predicting the outcome after extracorporeal shock wave lithotripsy. BJU Int 2009; 103: 524-528. https://doi.org/10.1111/j.1464-410X.2008.08069.x
  3. Demehri S, Kalra MK, Rybicki FJ, Steigner ML, Lang MJ, Houseman EA, Curhan GC, Silverman SG. Quantification of urinary stone volume: attenuation threshold-based CT method-a technical note. Radiology 2011; 258: 915-922. https://doi.org/10.1148/radiol.10100333
  4. El-Assmy A, Abou-El-Ghar ME, El-Nahas AR, Refaie HF, Sheir KZ. Multidetector computed tomography: Role in determination of urinary stones composition and disintegration with extracorporeal shock wave lithotripsy-an in vitro study. Urology 2011; 77: 286-290. https://doi.org/10.1016/j.urology.2010.05.021
  5. Joseph P, Mandal A, Singh S, Mandal P, Sankhwar S, Sharma S. Computerized tomography attenuation value of renal calculus: can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study. J Urol 2002; 167: 1968-1971. https://doi.org/10.1016/S0022-5347(05)65064-1
  6. Kim SC, Burns EK, Lingeman JE, Paterson RF, McAteer JA, Williams Jr JC. Cystine calculi: correlation of CT-visible structure, CT number, and stone morphology with fragmentation by shock wave lithotripsy. Urol Res 2007; 35: 319-324. https://doi.org/10.1007/s00240-007-0117-1
  7. Kim SC, Hatt EK, Lingeman JE, Nadler RB, McATEER JA, Williams JC. Cystine: helical computerized tomography characterization of rough and smooth calculi in vitro. J Urol 2005; 174: 1468-1471. https://doi.org/10.1097/01.ju.0000173636.19741.24
  8. Ling GV, Ruby AL, Johnson DL, Thurmond M, Franti CE. Renal calculi in dogs and cats: prevalence, mineral type, breed, age, and gender interrelationships (1981-1993). J Vet Intern Med 1998; 12: 11-21. https://doi.org/10.1111/j.1939-1676.1998.tb00491.x
  9. Maloney ME, Marguet CG, Zhou Y, Kang DE, Sung JC, Springhart WP, Madden J, Zhong P, Preminger GM. Progressive increase of lithotripter output produces better invivo stone comminution. J Endourol 2006; 20: 603-606. https://doi.org/10.1089/end.2006.20.603
  10. Marchinena PG, Peres NB, Liyo J, Ocantos J, Gonzalez M, Jurado A, Daels F. CT SCAN as a predictor of composition and fragility of urinary lithiasis treated with extracorporeal shock wave lithotripsy in vitro. Arch Esp Urol 2009; 62: 215-222.
  11. Masad E, Jandhyala V, Dasgupta N, Somadevan N, Shashidhar N. Characterization of air void distribution in asphalt mixes using X-ray computed tomography. J Mater Civ Eng 2002; 14: 122-129. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:2(122)
  12. Motley G, Dalrymple N, Keesling C, Fischer J, Harmon W. Hounsfield unit density in the determination of urinary stone composition. Urology 2001; 58: 170-173. https://doi.org/10.1016/S0090-4295(01)01115-3
  13. Newhouse JH, Prien E, Amis Jr ES, Dretler S, Pfister R. Computed tomographic analysis of urinary calculi. AJR Am J Roentgenol 1984; 142: 545-548. https://doi.org/10.2214/ajr.142.3.545
  14. Oh W, Lindquist B. Image thresholding by indicator kriging. IEEE Trans Pattern Anal Mach Intell 1999; 21: 590-602. https://doi.org/10.1109/34.777370
  15. Olcott EW, Sommer FG, Napel S. Accuracy of detection and measurement of renal calculi: in vitro comparison of three-dimensional spiral CT, radiography, and nephrotomography. Radiology 1997; 204: 19-25. https://doi.org/10.1148/radiology.204.1.9205217
  16. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1975;11: 23-27.
  17. Pareek G, Armenakas NA, Panagopoulos G, Bruno JJ, Fracchia JA. Extracorporeal shock wave lithotripsy success based on body mass index and Hounsfield units. Urology 2005; 65: 33-36. https://doi.org/10.1016/j.urology.2004.08.004
  18. Pathak S, Lavin V, Vijay R, Basu S, Salim F, Collins M, Hastie K, Hall J. Radiological determination of stone density and skin-to-stone distance-Can it predict the success of extracorporeal shock wave lithotripsy? Br J Med Surg Urol 2009; 2: 180-184. https://doi.org/10.1016/j.bjmsu.2009.05.001
  19. Pramanik R, Asplin JR, Jackson ME, Williams Jr JC. Protein content of human apatite and brushite kidney stones: significant correlation with morphologic measures. Urol Res 2008; 36: 251-258. https://doi.org/10.1007/s00240-008-0151-7
  20. Ridler T, Calvard S. Picture thresholding using an iterative selection method. IEEE Trans syst Man Cybern 1978; 8: 630-632. https://doi.org/10.1109/TSMC.1978.4310039
  21. Ringden I, Tiselius HG. Composition and clinically determined hardness of urinary tract stones. Scand J Urol Nephrol 2007; 41: 316-323. https://doi.org/10.1080/00365590601154551
  22. Saw KC, Mcateer JA, Fineberg NS, Monga AG, Chua GT, Lingeman JE, Williams JR. Calcium stone fragility is predicted by helical CT attenuation values. J Endourol 2000; 14: 471-474. https://doi.org/10.1089/end.2000.14.471
  23. Shah K, Kurien A, Mishra S, Ganpule A, Muthu V, Sabnis RB, Desai M. Predicting effectiveness of extracorporeal shockwave lithotripsy by stone attenuation value. J Endourol 2010; 24: 1169-1173. https://doi.org/10.1089/end.2010.0124
  24. Williams JC, Paterson RF, Kopecky KK, Lingeman JE, McATEER JA. High resolution detection of internal structure of renal calculi by helical computerized tomography. J Urol 2002; 167: 322-326. https://doi.org/10.1016/S0022-5347(05)65462-6
  25. Williams JC, Saw KC, Paterson RF, Hatt EK, McAteer JA, Lingeman JE. Variability of renal stone fragility in shock wave lithotripsy. Urology 2003; 61: 1092-1096. https://doi.org/10.1016/S0090-4295(03)00349-2
  26. Williams Jr JC, Kim SC, Zarse CA, Mcateer JA, Lingeman JE. Progress in the use of helical CT for imaging urinary calculi. J Endourol 2004; 18: 937-941. https://doi.org/10.1089/end.2004.18.937
  27. Williams Jr JC, Zarse CA, Jackson ME, Witzmann FA, McAteer JA. Variability of protein content in calcium oxalate monohydrate stones. J Endourol 2006; 20: 560-564. https://doi.org/10.1089/end.2006.20.560
  28. Yoshida S, Hayashi T, Ikeda J, Yoshinaga A, Ohno R, Ishii N, Okada T, Osada H, Honda N, Yamada T. Role of volume and attenuation value histogram of urinary stone on noncontrast helical computed tomography as predictor of fragility by extracorporeal shock wave lithotripsy. Urology 2006; 68: 33-37.
  29. Zarse CA, Hameed TA, Jackson ME, Pishchalnikov YA, Lingeman JE, McAteer JA, Williams Jr JC. CT visible internal stone structure, but not Hounsfield unit value, of calcium oxalate monohydrate (COM) calculi predicts lithotripsy fragility in vitro. Urol Res 2007; 35: 201-206. https://doi.org/10.1007/s00240-007-0104-6
  30. Zarse CA, McAteer JA, Sommer AJ, Kim SC, Hatt EK, Lingeman JE, Evan AP, Williams JC. Nondestructive analysis of urinary calculi using micro computed tomography. BMC Urol 2004; 4: 15. https://doi.org/10.1186/1471-2490-4-15
  31. Zarse CA, McAteer JA, Tann M, Sommer AJ, Kim SC, Paterson RF, Hatt EK, Lingeman JE, Evan AP, Williams JC. Helical computed tomography accurately reports urinary stone composition using attenuation values: in vitro verification using high-resolution micro-computed tomography calibrated to fourier transform infrared microspectroscopy. Urology 2004; 63: 828-833. https://doi.org/10.1016/j.urology.2003.11.038
  32. Zhou Y, Cocks FH, Preminger GM, Zhong P. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. J Urol 2004; 172: 349-354. https://doi.org/10.1097/01.ju.0000132356.97888.8b