• Title/Summary/Keyword: Voice signal feature

Search Result 50, Processing Time 0.028 seconds

A Study on the Automatic Speech Control System Using DMS model on Real-Time Windows Environment (실시간 윈도우 환경에서 DMS모델을 이용한 자동 음성 제어 시스템에 관한 연구)

  • 이정기;남동선;양진우;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.51-56
    • /
    • 2000
  • Is this paper, we studied on the automatic speech control system in real-time windows environment using voice recognition. The applied reference pattern is the variable DMS model which is proposed to fasten execution speed and the one-stage DP algorithm using this model is used for recognition algorithm. The recognition vocabulary set is composed of control command words which are frequently used in windows environment. In this paper, an automatic speech period detection algorithm which is for on-line voice processing in windows environment is implemented. The variable DMS model which applies variable number of section in consideration of duration of the input signal is proposed. Sometimes, unnecessary recognition target word are generated. therefore model is reconstructed in on-line to handle this efficiently. The Perceptual Linear Predictive analysis method which generate feature vector from extracted feature of voice is applied. According to the experiment result, but recognition speech is fastened in the proposed model because of small loud of calculation. The multi-speaker-independent recognition rate and the multi-speaker-dependent recognition rate is 99.08% and 99.39% respectively. In the noisy environment the recognition rate is 96.25%.

  • PDF

Electromyographic evidence for a gestural-overlap analysis of vowel devoicing in Korean

  • Jun, Sun-A;Beckman, M.;Niimi, Seiji;Tiede, Mark
    • Speech Sciences
    • /
    • v.1
    • /
    • pp.153-200
    • /
    • 1997
  • In languages such as Japanese, it is very common to observe that short peripheral vowel are completely voiceless when surrounded by voiceless consonants. This phenomenon has been known as Montreal French, Shanghai Chinese, Greek, and Korean. Traditionally this phenomenon has been described as a phonological rule that either categorically deletes the vowel or changes the [+voice] feature of the vowel to [-voice]. This analysis was supported by Sawashima (1971) and Hirose (1971)'s observation that there are two distinct EMG patterns for voiced and devoiced vowel in Japanese. Close examination of the phonetic evidence based on acoustic data, however, shows that these phonological characterizations are not tenable (Jun & Beckman 1993, 1994). In this paper, we examined the vowel devoicing phenomenon in Korean using data from ENG fiberscopic and acoustic recorders of 100 sentences produced by one Korean speaker. The results show that there is variability in the 'degree of devoicing' in both acoustic and EMG signals, and in the patterns of glottal closing and opening across different devoiced tokens. There seems to be no categorical difference between devoiced and voiced tokens, for either EMG activity events or glottal patterns. All of these observations support the notion that vowel devoicing in Korean can not be described as the result of the application of a phonological rule. Rather, devoicing seems to be a highly variable 'phonetic' process, a more or less subtle variation in the specification of such phonetic metrics as degree and timing of glottal opening, or of associated subglottal pressure or intra-oral airflow associated with concurrent tone and stricture specifications. Some of token-pair comparisons are amenable to an explanation in terms of gestural overlap and undershoot. However, the effect of gestural timing on vocal fold state seems to be a highly nonlinear function of the interaction among specifications for the relative timing of glottal adduction and abduction gestures, of the amplitudes of the overlapped gestures, of aerodynamic conditions created by concurrent oral tonal gestures, and so on. In summary, to understand devoicing, it will be necessary to examine its effect on phonetic representation of events in many parts of the vocal tracts, and at many stages of the speech chain between the motor intent and the acoustic signal that reaches the hearer's ear.

  • PDF

Implementation of Real-time Vowel Recognition Mouse based on Smartphone (스마트폰 기반의 실시간 모음 인식 마우스 구현)

  • Jang, Taeung;Kim, Hyeonyong;Kim, Byeongman;Chung, Hae
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.8
    • /
    • pp.531-536
    • /
    • 2015
  • The speech recognition is an active research area in the human computer interface (HCI). The objective of this study is to control digital devices with voices. In addition, the mouse is used as a computer peripheral tool which is widely used and provided in graphical user interface (GUI) computing environments. In this paper, we propose a method of controlling the mouse with the real-time speech recognition function of a smartphone. The processing steps include extracting the core voice signal after receiving a proper length voice input with real time, to perform the quantization by using the learned code book after feature extracting with mel frequency cepstral coefficient (MFCC), and to finally recognize the corresponding vowel using hidden markov model (HMM). In addition a virtual mouse is operated by mapping each vowel to the mouse command. Finally, we show the various mouse operations on the desktop PC display with the implemented smartphone application.

Accelerometer-based Gesture Recognition for Robot Interface (로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식)

  • Jang, Min-Su;Cho, Yong-Suk;Kim, Jae-Hong;Sohn, Joo-Chan
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.53-69
    • /
    • 2011
  • Vision and voice-based technologies are commonly utilized for human-robot interaction. But it is widely recognized that the performance of vision and voice-based interaction systems is deteriorated by a large margin in the real-world situations due to environmental and user variances. Human users need to be very cooperative to get reasonable performance, which significantly limits the usability of the vision and voice-based human-robot interaction technologies. As a result, touch screens are still the major medium of human-robot interaction for the real-world applications. To empower the usability of robots for various services, alternative interaction technologies should be developed to complement the problems of vision and voice-based technologies. In this paper, we propose the use of accelerometer-based gesture interface as one of the alternative technologies, because accelerometers are effective in detecting the movements of human body, while their performance is not limited by environmental contexts such as lighting conditions or camera's field-of-view. Moreover, accelerometers are widely available nowadays in many mobile devices. We tackle the problem of classifying acceleration signal patterns of 26 English alphabets, which is one of the essential repertoires for the realization of education services based on robots. Recognizing 26 English handwriting patterns based on accelerometers is a very difficult task to take over because of its large scale of pattern classes and the complexity of each pattern. The most difficult problem that has been undertaken which is similar to our problem was recognizing acceleration signal patterns of 10 handwritten digits. Most previous studies dealt with pattern sets of 8~10 simple and easily distinguishable gestures that are useful for controlling home appliances, computer applications, robots etc. Good features are essential for the success of pattern recognition. To promote the discriminative power upon complex English alphabet patterns, we extracted 'motion trajectories' out of input acceleration signal and used them as the main feature. Investigative experiments showed that classifiers based on trajectory performed 3%~5% better than those with raw features e.g. acceleration signal itself or statistical figures. To minimize the distortion of trajectories, we applied a simple but effective set of smoothing filters and band-pass filters. It is well known that acceleration patterns for the same gesture is very different among different performers. To tackle the problem, online incremental learning is applied for our system to make it adaptive to the users' distinctive motion properties. Our system is based on instance-based learning (IBL) where each training sample is memorized as a reference pattern. Brute-force incremental learning in IBL continuously accumulates reference patterns, which is a problem because it not only slows down the classification but also downgrades the recall performance. Regarding the latter phenomenon, we observed a tendency that as the number of reference patterns grows, some reference patterns contribute more to the false positive classification. Thus, we devised an algorithm for optimizing the reference pattern set based on the positive and negative contribution of each reference pattern. The algorithm is performed periodically to remove reference patterns that have a very low positive contribution or a high negative contribution. Experiments were performed on 6500 gesture patterns collected from 50 adults of 30~50 years old. Each alphabet was performed 5 times per participant using $Nintendo{(R)}$ $Wii^{TM}$ remote. Acceleration signal was sampled in 100hz on 3 axes. Mean recall rate for all the alphabets was 95.48%. Some alphabets recorded very low recall rate and exhibited very high pairwise confusion rate. Major confusion pairs are D(88%) and P(74%), I(81%) and U(75%), N(88%) and W(100%). Though W was recalled perfectly, it contributed much to the false positive classification of N. By comparison with major previous results from VTT (96% for 8 control gestures), CMU (97% for 10 control gestures) and Samsung Electronics(97% for 10 digits and a control gesture), we could find that the performance of our system is superior regarding the number of pattern classes and the complexity of patterns. Using our gesture interaction system, we conducted 2 case studies of robot-based edutainment services. The services were implemented on various robot platforms and mobile devices including $iPhone^{TM}$. The participating children exhibited improved concentration and active reaction on the service with our gesture interface. To prove the effectiveness of our gesture interface, a test was taken by the children after experiencing an English teaching service. The test result showed that those who played with the gesture interface-based robot content marked 10% better score than those with conventional teaching. We conclude that the accelerometer-based gesture interface is a promising technology for flourishing real-world robot-based services and content by complementing the limits of today's conventional interfaces e.g. touch screen, vision and voice.

Emotion Recognition Algorithm Based on Minimum Classification Error incorporating Multi-modal System (최소 분류 오차 기법과 멀티 모달 시스템을 이용한 감정 인식 알고리즘)

  • Lee, Kye-Hwan;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.76-81
    • /
    • 2009
  • We propose an effective emotion recognition algorithm based on the minimum classification error (MCE) incorporating multi-modal system The emotion recognition is performed based on a Gaussian mixture model (GMM) based on MCE method employing on log-likelihood. In particular, the reposed technique is based on the fusion of feature vectors based on voice signal and galvanic skin response (GSR) from the body sensor. The experimental results indicate that performance of the proposal approach based on MCE incorporating the multi-modal system outperforms the conventional approach.

Semantic Ontology Speech Recognition Performance Improvement using ERB Filter (ERB 필터를 이용한 시맨틱 온톨로지 음성 인식 성능 향상)

  • Lee, Jong-Sub
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.265-270
    • /
    • 2014
  • Existing speech recognition algorithm have a problem with not distinguish the order of vocabulary, and the voice detection is not the accurate of noise in accordance with recognized environmental changes, and retrieval system, mismatches to user's request are problems because of the various meanings of keywords. In this article, we proposed to event based semantic ontology inference model, and proposed system have a model to extract the speech recognition feature extract using ERB filter. The proposed model was used to evaluate the performance of the train station, train noise. Noise environment of the SNR-10dB, -5dB in the signal was performed to remove the noise. Distortion measure results confirmed the improved performance of 2.17dB, 1.31dB.

Method of Biological Information Analysis Based-on Object Contextual (대상객체 맥락 기반 생체정보 분석방법)

  • Kim, Kyung-jun;Kim, Ju-yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.41-43
    • /
    • 2022
  • In order to prevent and block infectious diseases caused by the recent COVID-19 pandemic, non-contact biometric information acquisition and analysis technology is attracting attention. The invasive and attached biometric information acquisition method accurately has the advantage of measuring biometric information, but has a risk of increasing contagious diseases due to the close contact. To solve these problems, the non-contact method of extracting biometric information such as human fingerprints, faces, iris, veins, voice, and signatures with automated devices is increasing in various industries as data processing speed increases and recognition accuracy increases. However, although the accuracy of the non-contact biometric data acquisition technology is improved, the non-contact method is greatly influenced by the surrounding environment of the object to be measured, which is resulting in distortion of measurement information and poor accuracy. In this paper, we propose a context-based bio-signal modeling technique for the interpretation of personalized information (image, signal, etc.) for bio-information analysis. Context-based biometric information modeling techniques present a model that considers contextual and user information in biometric information measurement in order to improve performance. The proposed model analyzes signal information based on the feature probability distribution through context-based signal analysis that can maximize the predicted value probability.

  • PDF

Korean Digit Speech Recognition Dialing System using Filter Bank (필터뱅크를 이용한 한국어 숫자음 인식 다이얼링 시스템)

  • 박기영;최형기;김종교
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.5
    • /
    • pp.62-70
    • /
    • 2000
  • In this study, speech recognition for Korean digit is performed using filter bank which is programmed discrete HMM and DTW. Spectral analysis reveals speech signal features which are mainly due to the shape of the vocal tract. And spectral feature of speech are generally obtained as the exit of filter banks, which properly integrated a spectrum at defined frequency ranges. A set of 8 band pass filters is generally used since it simulates human ear processing. And defined frequency ranges are 320-330, 450-460, 640-650, 840-850, 900-1000, 1100-1200, 2000-2100, 3900-4000Hz and then sampled at 8kHz of sampling rate. Frame width is 20ms and period is 10ms. Accordingly, we found that the recognition rate of DTW is better than HMM for Korean digit speech in the experimental result. Recognition accuracy of Korean digit speech using filter bank is 93.3% for the 24th BPF, 89.1% for the 16th BPF and 88.9% for the 8th BPF of hardware realization of voice dialing system.

  • PDF

A Study on the Spoken KOrean-Digit Recognition Using the Neural Netwok (神經網을 利用한 韓國語 數字音 認識에 관한 硏究)

  • Park, Hyun-Hwa;Gahang, Hae Dong;Bae, Keun Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.5-13
    • /
    • 1992
  • Taking devantage of the property that Korean digit is a mono-syllable word, we proposed a spoken Korean-digit recognition scheme using the multi-layer perceptron. The spoken Korean-digit is divided into three segments (initial sound, medial vowel, and final consonant) based on the voice starting / ending points and a peak point in the middle of vowel sound. The feature vectors such as cepstrum, reflection coefficients, ${\Delta}$cepstrum and ${\Delta}$energy are extracted from each segment. It has been shown that cepstrum, as an input vector to the neural network, gives higher recognition rate than reflection coefficients. Regression coefficients of cepstrum did not affect as much as we expected on the recognition rate. That is because, it is believed, we extracted features from the selected stationary segments of the input speech signal. With 150 ceptral coefficients obtained from each spoken digit, we achieved correct recognition rate of 97.8%.

  • PDF

Face Feature Extraction for Child Ocular Inspection and Diagnosis of Colics by Crying Analysis (소아 망진을 위한 얼굴 특징 추출 및 영아 산통 진단을 위한 울음소리 분석)

  • Cho Dong-Uk;Kim Bong-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.97-104
    • /
    • 2006
  • There is no method to control for the child efficiently when disease happens who cannot be able to express his symptoms. Therefore, doctor's diagnosis depends on inquiring from child's patients, that leads to wrong diagnosis result. For this, in this paper, we would like to develop child ocular inspection, auscultation diagnosis instruments, using Oriental medicine principle that living body signal of five organs and six hallow organs which reflects patients face and voice We would like to get more accurate diagnosis result for child's symptoms from doctor's intuition on the basis of diagnostic sight visualization, objectification, quantization itself. This paper develops color revision, YCbCr application, and face color selection and five sensory organs and nose or apex extraction method etc, in child ocular inspection by first work achievement sequence among the whole development systems. Also, in occasion of child auscultation, crying characteristics of colics through pitch, intensity and formant analysis is numerized and objectifies doctor's intuition through this. Finally, experiments are performed to verify the effectiveness of the proposed methods.