• Title/Summary/Keyword: Voice Feature

Search Result 232, Processing Time 0.024 seconds

Reconstruction Effect of the Spectral Entropy for the Voice Activity Detection (음성 활동 구간 검출을 위한 스펙트랄 엔트로피의 재구성 효과)

  • Kwon HO-Min;Han Hag-Yong;Lee Kwang-Seok;Koh Si-Young;Hur Kang-In
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.25-28
    • /
    • 2002
  • Voice activity detection is important Problem in the speech recognition and communication. This paper introduces feature parameter which is reconstructed by the spectral entropy of information theory for the robust voice activity detection in the noise environment, analyzes and compares it with the energy method of voice activity detection and performance. In experiment, we confirmed that the spectral entropy is more feature parameter than the energy method for the robust voice activity detection in the various noise environment.

  • PDF

GMM Based Voice Conversion Using Kernel PCA (Kernel PCA를 이용한 GMM 기반의 음성변환)

  • Han, Joon-Hee;Bae, Jae-Hyun;Oh, Yung-Hwan
    • MALSORI
    • /
    • no.67
    • /
    • pp.167-180
    • /
    • 2008
  • This paper describes a novel spectral envelope conversion method based on Gaussian mixture model (GMM). The core of this paper is rearranging source feature vectors in input space to the transformed feature vectors in feature space for the better modeling of GMM of source and target features. The quality of statistical modeling is dependent on the distribution and the dimension of data. The proposed method transforms both of the distribution and dimension of data and gives us the chance to model the same data with different configuration. Because the converted feature vectors should be on the input space, only source feature vectors are rearranged in the feature space and target feature vectors remain unchanged for the joint pdf of source and target features using KPCA. The experimental result shows that the proposed method outperforms the conventional GMM-based conversion method in various training environment.

  • PDF

Noise Robust Emotion Recognition Feature : Frequency Range of Meaningful Signal (음성의 특정 주파수 범위를 이용한 잡음환경에서의 감정인식)

  • Kim Eun-Ho;Hyun Kyung-Hak;Kwak Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.68-76
    • /
    • 2006
  • The ability to recognize human emotion is one of the hallmarks of human-robot interaction. Hence this paper describes the realization of emotion recognition. For emotion recognition from voice, we propose a new feature called frequency range of meaningful signal. With this feature, we reached average recognition rate of 76% in speaker-dependent. From the experimental results, we confirm the usefulness of the proposed feature. We also define the noise environment and conduct the noise-environment test. In contrast to other features, the proposed feature is robust in a noise-environment.

Voice Recognition Performance Improvement using the Convergence of Bayesian method and Selective Speech Feature (베이시안 기법과 선택적 음성특징 추출을 융합한 음성 인식 성능 향상)

  • Hwang, Jae-Chun
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.7-11
    • /
    • 2016
  • Voice recognition systems which use a white noise and voice recognition environment are not correct voice recognition with variable voice mixture. Therefore in this paper, we propose a method using the convergence of Bayesian technique and selecting voice for effective voice recognition. we make use of bank frequency response coefficient for selective voice extraction, Using variables observed for the combination of all the possible two observations for this purpose, and has an voice signal noise information to the speech characteristic extraction selectively is obtained by the energy ratio on the output. It provide a noise elimination and recognition rates are improved with combine voice recognition of bayesian methode. The result which we confirmed that the recognition rate of 2.3% is higher than HMM and CHMM methods in vocabulary recognition, respectively.

Voice Synthesis Detection Using Language Model-Based Speech Feature Extraction (언어 모델 기반 음성 특징 추출을 활용한 생성 음성 탐지)

  • Seung-min Kim;So-hee Park;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.439-449
    • /
    • 2024
  • Recent rapid advancements in voice generation technology have enabled the natural synthesis of voices using text alone. However, this progress has led to an increase in malicious activities, such as voice phishing (voishing), where generated voices are exploited for criminal purposes. Numerous models have been developed to detect the presence of synthesized voices, typically by extracting features from the voice and using these features to determine the likelihood of voice generation.This paper proposes a new model for extracting voice features to address misuse cases arising from generated voices. It utilizes a deep learning-based audio codec model and the pre-trained natural language processing model BERT to extract novel voice features. To assess the suitability of the proposed voice feature extraction model for voice detection, four generated voice detection models were created using the extracted features, and performance evaluations were conducted. For performance comparison, three voice detection models based on Deepfeature proposed in previous studies were evaluated against other models in terms of accuracy and EER. The model proposed in this paper achieved an accuracy of 88.08%and a low EER of 11.79%, outperforming the existing models. These results confirm that the voice feature extraction method introduced in this paper can be an effective tool for distinguishing between generated and real voices.

Voice Activity Detection Based on Signal Energy and Entropy-difference in Noisy Environments (엔트로피 차와 신호의 에너지에 기반한 잡음환경에서의 음성검출)

  • Ha, Dong-Gyung;Cho, Seok-Je;Jin, Gang-Gyoo;Shin, Ok-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.768-774
    • /
    • 2008
  • In many areas of speech signal processing such as automatic speech recognition and packet based voice communication technique, VAD (voice activity detection) plays an important role in the performance of the overall system. In this paper, we present a new feature parameter for VAD which is the product of energy of the signal and the difference of two types of entropies. For this end, we first define a Mel filter-bank based entropy and calculate its difference from the conventional entropy in frequency domain. The difference is then multiplied by the spectral energy of the signal to yield the final feature parameter which we call PEED (product of energy and entropy difference). Through experiments. we could verify that the proposed VAD parameter is more efficient than the conventional spectral entropy based parameter in various SNRs and noisy environments.

A study on the voice command recognition at the motion control in the industrial robot (산업용 로보트의 동작제어 명령어의 인식에 관한 연구)

  • 이순요;권규식;김홍태
    • Journal of the Ergonomics Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.3-10
    • /
    • 1991
  • The teach pendant and keyboard have been used as an input device of control command in human-robot sustem. But, many problems occur in case that the usef is a novice. So, speech recognition system is required to communicate between a human and the robot. In this study, Korean voice commands, eitht robot commands, and ten digits based on the broad phonetic analysis are described. Applying broad phonetic analysis, phonemes of voice commands are divided into phoneme groups, such as plosive, fricative, affricative, nasal, and glide sound, having similar features. And then, the feature parameters and their ranges to detect phoneme groups are found by minimax method. Classification rules are consisted of combination of the feature parameters, such as zero corssing rate(ZCR), log engery(LE), up and down(UD), formant frequency, and their ranges. Voice commands were recognized by the classification rules. The recognition rate was over 90 percent in this experiment. Also, this experiment showed that the recognition rate about digits was better than that about robot commands.

  • PDF

Voice Recognition Module for Multi-functional Electric Wheelchair (다기능 전동휠체어의 음성인식 모듈에 관한 연구)

  • 류홍석;김정훈;강성인;강재명;이상배
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.83-86
    • /
    • 2002
  • This paper intends to provide convenience to the disabled, losing the use of their limbs, through voice recognition technology. The voice recognition part of this system recognizes voice by DTW (Dynamic Time Warping) Which is most Widely used in Speaker dependent system. Specially, S/N rate was improved through Wiener filter in the pre-treatment phase while considering real environmental conditions; the result values of 12th order feature pattern per frame are extracted by DTW algorithm using LPC and Cepsturm in feature extraction process. Furthermore, miniaturization is pursued using TMS320C32, 71's the floating-point DSP, for the hardware part. Currently, 90% of hardware porting has been completed, but we can confirm that the recognition rate was 96% as a result of performing the DTW algorithm in PC.

  • PDF

Adult Contents Filtering using Voice Information and DTW (음성 정보와 DTW 알고리즘을 활용한 성인 컨텐츠 필터링)

  • Cho, Jung-Ik;Lee, Yill-Byung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.432-434
    • /
    • 2008
  • This paper deals with the DTW algorithm for the filtering contents, in order to improve the filtering performance rate. Contents filtering is the technology that confirm the identification of contents by using the feature of voice. Such technique is classified into general contents and adults contents. This proposed method extracts the information of voice contribute to improvement of filtering contents. In other words, We proposed filtering identification rate can be improved by using DTW algorithm. As a result, the proposed method is utilized improvement of filtering contents. Finally, we provide contents examples to test the accuracy of the proposed feature. Consequently, We know that the difference of characteristic between general contents and adults contents. In the future, We utilize this to improve filtering performance rate.

  • PDF

A Parametric Voice Activity Detection Based on the SPD-TE for Nonstationary Noises (비정체성 잡음을 위한 SPD-TE 기반 계수형 음성 활동 탐지)

  • Koo, Boneung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.310-315
    • /
    • 2015
  • A single channel VAD (Voice Activity Detection) algorithm for nonstationary noise environment is proposed in this paper. Threshold values of the feature parameter for VAD decision are updated adaptively based on estimates of means and standard deviations of past non-speech frames. The feature parameter, SPD-TE (Spectral Power Difference-Teager Energy), is obtained by applying the Teager energy to the WPD (Wavelet Packet Decomposition) coefficients. It was reported previously that the SPD-TE is robust to noise as a feature for VAD. Experimental results by using TIMIT speech and NOISEX-92 noise databases show that decision accuracy of the proposed algorithm is comparable to several typical VAD algorithms including standards for SNR values ranging from 10 to -10 dB.