• 제목/요약/키워드: Voice Feature

검색결과 232건 처리시간 0.02초

목소리 특성과 음성 특징 파라미터의 상관관계와 SVM을 이용한 특성 분류 모델링 (Correlation analysis of voice characteristics and speech feature parameters, and classification modeling using SVM algorithm)

  • 박태성;권철홍
    • 말소리와 음성과학
    • /
    • 제9권4호
    • /
    • pp.91-97
    • /
    • 2017
  • This study categorizes several voice characteristics by subjective listening assessment, and investigates correlation between voice characteristics and speech feature parameters. A model was developed to classify voice characteristics into the defined categories using SVM algorithm. To do this, we extracted various speech feature parameters from speech database for men in their 20s, and derived statistically significant parameters correlated with voice characteristics through ANOVA analysis. Then, these derived parameters were applied to the proposed SVM model. The experimental results showed that it is possible to obtain some speech feature parameters significantly correlated with the voice characteristics, and that the proposed model achieves the classification accuracies of 88.5% on average.

목소리 특성의 주관적 평가와 음성 특징과의 상관관계 기초연구 (A Preliminary Study on Correlation between Voice Characteristics and Speech Features)

  • 한성만;김상범;김종열;권철홍
    • 말소리와 음성과학
    • /
    • 제3권4호
    • /
    • pp.85-91
    • /
    • 2011
  • Sasang constitution medicine utilizes voice characteristics to diagnose a person's constitution. To classify Sasang constitutional groups using speech information technology, this study aims at establishing the relationship between Sasang constitutional groups and their corresponding voice characteristics by investigating various speech feature variables. The speech variables include features related to speech source and vocal tract filter. Experimental results show that statistically significant correlation between voice characteristics and some speech feature variables is observed.

  • PDF

PCA 기반 파라메타를 이용한 숫자음 인식 (The Recognition of Korean Syllables using Parameter Based on Principal Component Analysis)

  • 박경훈;표창수;김창근;허강인
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 추계종합학술대회논문집
    • /
    • pp.181-184
    • /
    • 2000
  • 본 논문에서는 음성 특징추출의 한 방법으로서 기존의 방법들과는 달리 음성의 통계적인 특성들을 고려하여, 입력 공간내에서 변동량이 가장 많은 방향으로 주축을 발견한 다음 그 정보를 이용하여 데이터의 중복성을 제거하는 주성분 해석(PCA:Principal Component Analysis)기법을 사용하여 음성의 특징을 추출하는 방법을 제안한다. 본 논문의 숫자음 인식실험 결과와 비교하기 위하여 기존의 음성특징 파라메타인 Mel-Cepstrum과 비교하였을 때, 0.5%의 인식률 차이가 있었으나, 음성특징 추출시 기존의 파라메타에 비하여 비교적 짧은 시간에 구해지는 점과 데이터의 통계적 특성을 이용한 최적의 기저벡터를 이용한다면 단어나 문장 인식시에 보다 나은 인식률을 얻으리라 사료된다.

  • PDF

신경망을 이용한 단어에서 모음추출에 관한 연구 (A study on the vowel extraction from the word using the neural network)

  • 이택준;김윤중
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2003년도 추계공동학술대회
    • /
    • pp.721-727
    • /
    • 2003
  • This study designed and implemented a system to extract of vowel from a word. The system is comprised of a voice feature extraction module and a neutral network module. The voice feature extraction module use a LPC(Linear Prediction Coefficient) model to extract a voice feature from a word. The neutral network module is comprised of a learning module and voice recognition module. The learning module sets up a learning pattern and builds up a neutral network to learn. Using the information of a learned neutral network, a voice recognition module extracts a vowel from a word. A neutral network was made to learn selected vowels(a, eo, o, e, i) to test the performance of a implemented vowel extraction recognition machine. Through this experiment, could confirm that speech recognition module extract of vowel from 4 words.

  • PDF

음성 신호 특징과 셉스트럽 특징 분포에서 묵음 특징 정규화를 융합한 음성 인식 성능 향상 (Voice Recognition Performance Improvement using the Convergence of Voice signal Feature and Silence Feature Normalization in Cepstrum Feature Distribution)

  • 황재천
    • 한국융합학회논문지
    • /
    • 제8권5호
    • /
    • pp.13-17
    • /
    • 2017
  • 음성 인식에서 기존의 음성 특징 추출 방법은 명확하지 않은 스레숄드 값으로 인해 부정확한 음성 인식률을 가진다. 본 연구에서는 음성과 비음성에 대한 특징 추출을 묵음 특징 정규화를 융합한 음성 인식 성능 향상을 위한 방법을 모델링 한다. 제안한 방법에서는 잡음의 영향을 최소화하여 모델을 구성하였고, 각 음성 프레임에 대해 음성 신호 특징을 추출하여 음성 인식 모델을 구성하였고, 이를 묵음 특징 정규화를 융합하여 에너지 스펙트럼을 엔트로피와 유사하게 표현하여 원래의 음성 신호를 생성하고 음성의 특징이 잡음을 적게 받도록 하였다. 셉스트럼에서 음성과 비음성 분류의 기준 값을 정하여 신호 대 잡음 비율이 낮은 신호에서 묵음 특징 정규화로 성능을 향상하였다. 논문에서 제시하는 방법의 성능 분석은 HMM과 CHMM을 비교하여 결과를 보였으며, 기존의 HMM과 CHMM을 비교한 결과 음성 종속 단계에서는 2.1%p의 인식률 향상이 있었으며, 음성 독립 단계에서는 0.7%p 만큼의 인식률 향상이 있었다.

청각 환경이 구강안면 통증환자의 음성 파라미터에 미치는 영향 (The Effect of Auditory Condition on Voice Parameter of Orofacial Pain Patient)

  • 이주영;백광현;홍정표
    • Journal of Oral Medicine and Pain
    • /
    • 제30권4호
    • /
    • pp.427-432
    • /
    • 2005
  • 본 연구는 구강안면통증 환자의 음성적 특징과 청각 환경에 따른 음성적 변화를 살펴보기 위한 것이다. 구강안면통증 환자 29명과 정상인 31명을 대상으로 그들의 일반 음성과 청각 조건(소음, 음악)에서의 음성 파라미터들을 비교 분석하여 다음과 같은 결론을 얻을 수 있었다. 1. 구강안면통증 환자는 정상인의 음성과 비교해 낮은 F0(Hz) 값과 높은 jitter(%), shimmer(%)값을 가져 정상인에 비해 낮고 불안정한 음성 특징(feature)을 나타내었다. 2. 구강안면통증 환자의 음성은 소음 환경과 비교해 음악 환경에서 낮은 F0(Hz)값과 shimmer(%)값을 가져 보다 이완되고 안정된 음성 특징을 나타내었다. 3. 정상인의 음성은 소음 환경에서 높은 F0(Hz)값을 가졌으나 음악, 소음 환경에 따른 특징적인 차이를 나타내지 않았다. 이상의 결과를 통해 구강안면통증 환자는 정상인의 음성과 비교해 특징적인 차이를 보였으며 외부적인 청각 환경에도 다른 반응 양상을 나타내었다. 따라서 구강안면통증 환자들의 기능적 장애를 보다 효율적으로 치료하기 위해서는 음악과 같은 긍정적인 정서 환경이 제공되어야 할 것으로 사료된다.

음성 에너지 최대화와 묵음 특징 정규화를 이용한 잡음 환경에 강인한 음성 검출 (Voice Activity Detection in Noisy Environment using Speech Energy Maximization and Silence Feature Normalization)

  • 안찬식;최기호
    • 디지털융복합연구
    • /
    • 제11권6호
    • /
    • pp.169-174
    • /
    • 2013
  • 음성 인식 성능 저하의 문제는 모델 훈련 환경과 인식 환경의 차이이다. 이러한 환경의 불일치를 줄이기 위한 방법으로 다양한 묵음 특징 정규화 방법을 사용하고 있다. 기존의 묵음 특징 정규화 방법은 낮은 신호 대 잡음비에서 묵음 구간의 에너지 레벨이 증가하여 음성과 비음성에 대한 분류의 정확도가 떨어짐으로 인해 인식 성능이 저하되는 문제점이 있다. 본 논문에서는 음성 에너지 최대화와 묵음 특징 정규화를 이용한 잡음 환경에 강인한 음성 검출 방법을 제안하였다. 제안한 방법은 높은 신호 대 잡음비에서는 음성 에너지를 최대화시켜 특징이 잡음의 영향을 적게 받는 특성을 이용하였고 낮은 신호 대 잡음비에서는 음성/비음성의 켑스트럼 특징 분포 특성을 이용하여 인식 성능을 향상시켰다. 인식 실험 결과 기존 방법에 비해 향상된 인식 성능을 확인할 수 있었다.

모방발화에 대한 음향음성학적 연구(2) -운율 특징을 중심으로- (An Acoustic Phonetic Study about Voice Imitation(2) -Focusing on Prosody Feature-)

  • 박미영;박지혜;신지영;강선미
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 5월 학술대회지
    • /
    • pp.56-60
    • /
    • 2003
  • The purpose of this paper is to research voice imitation. Voice imitation changes various phonetic feature. Also, in our experimental results, voice imitation has preferential prosody difference. For imitating voice, imitators change their fundamental frequency bandwidths for the most part. Imitative speakers change their high fundamental frequencies effectively while they maintain their low fundamental frequencies. Also, excellent group is distinctly superior to common group for imitating prosodic patterns. That is, the f0 bandwidth's change and the prosodic patterns are significant in imitating voice. But the low f0 is maintain by all speakers.

  • PDF

음성구간검출을 위한 비정상성 잡음에 강인한 특징 추출 (Robust Feature Extraction for Voice Activity Detection in Nonstationary Noisy Environments)

  • 홍정표;박상준;정상배;한민수
    • 말소리와 음성과학
    • /
    • 제5권1호
    • /
    • pp.11-16
    • /
    • 2013
  • This paper proposes robust feature extraction for accurate voice activity detection (VAD). VAD is one of the principal modules for speech signal processing such as speech codec, speech enhancement, and speech recognition. Noisy environments contain nonstationary noises causing the accuracy of the VAD to drastically decline because the fluctuation of features in the noise intervals results in increased false alarm rates. In this paper, in order to improve the VAD performance, harmonic-weighted energy is proposed. This feature extraction method focuses on voiced speech intervals and weighted harmonic-to-noise ratios to determine the amount of the harmonicity to frame energy. For performance evaluation, the receiver operating characteristic curves and equal error rate are measured.

Gender Classification of Speakers Using SVM

  • Han, Sun-Hee;Cho, Kyu-Cheol
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권10호
    • /
    • pp.59-66
    • /
    • 2022
  • 본 논문에서는 음성 데이터에서 특징벡터를 추출한 후 이를 분석하여 화자의 성별을 분류하는 연구를 진행하였다. 본 연구는 고객이 전화 등 음성을 통해 서비스를 요청할 시 요청한 고객의 성별을 자동으로 인식함으로써 직접 듣고 분류하지 않아도 되는 편의성을 제공한다. 학습된 모델을 활용하여 성별을 분류한 후 성별마다 요청 빈도가 높은 서비스를 분석하여 고객 맞춤형 추천 서비스를 제공하는 데에 유용하게 활용할 수 있다. 본 연구는 공백을 제거한 남성 및 여성의 음성 데이터를 기반으로 각각의 데이터에서 MFCC를 통해 특징벡터를 추출한 후 SVM 모델을 활용하여 기계학습을 진행하였다. 학습한 모델을 활용하여 음성 데이터의 성별을 분류한 결과 94%의 성별인식률이 도출되었다.