• Title/Summary/Keyword: Voice Feature

Search Result 232, Processing Time 0.027 seconds

Correlation analysis of voice characteristics and speech feature parameters, and classification modeling using SVM algorithm (목소리 특성과 음성 특징 파라미터의 상관관계와 SVM을 이용한 특성 분류 모델링)

  • Park, Tae Sung;Kwon, Chul Hong
    • Phonetics and Speech Sciences
    • /
    • v.9 no.4
    • /
    • pp.91-97
    • /
    • 2017
  • This study categorizes several voice characteristics by subjective listening assessment, and investigates correlation between voice characteristics and speech feature parameters. A model was developed to classify voice characteristics into the defined categories using SVM algorithm. To do this, we extracted various speech feature parameters from speech database for men in their 20s, and derived statistically significant parameters correlated with voice characteristics through ANOVA analysis. Then, these derived parameters were applied to the proposed SVM model. The experimental results showed that it is possible to obtain some speech feature parameters significantly correlated with the voice characteristics, and that the proposed model achieves the classification accuracies of 88.5% on average.

A Preliminary Study on Correlation between Voice Characteristics and Speech Features (목소리 특성의 주관적 평가와 음성 특징과의 상관관계 기초연구)

  • Han, Sung-Man;Kim, Sang-Beom;Kim, Jong-Yeol;Kwon, Chul-Hong
    • Phonetics and Speech Sciences
    • /
    • v.3 no.4
    • /
    • pp.85-91
    • /
    • 2011
  • Sasang constitution medicine utilizes voice characteristics to diagnose a person's constitution. To classify Sasang constitutional groups using speech information technology, this study aims at establishing the relationship between Sasang constitutional groups and their corresponding voice characteristics by investigating various speech feature variables. The speech variables include features related to speech source and vocal tract filter. Experimental results show that statistically significant correlation between voice characteristics and some speech feature variables is observed.

  • PDF

The Recognition of Korean Syllables using Parameter Based on Principal Component Analysis (PCA 기반 파라메타를 이용한 숫자음 인식)

  • 박경훈;표창수;김창근;허강인
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.181-184
    • /
    • 2000
  • The new method of feature extraction is proposed, considering the statistic feature of human voice, unlike the conventional methods of voice extraction. PCA(principal Component Analysis) is applied to this new method. PCA removes the repeating of data after finding the axis direction which has the greatest variance in input dimension. Then the new method is applied to real voice recognition to assess performance. When results of the number recognition in this paper and the conventional Mel-Cepstrum of voice feature parameter are compared, there is 0.5% difference of recognition rate. Better recognition rate is expected than word or sentence recognition in that less convergence time than the conventional method in extracting voice feature. Also, better recognition tate is expected when the optimum vector is used by statistic feature of data.

  • PDF

A study on the vowel extraction from the word using the neural network (신경망을 이용한 단어에서 모음추출에 관한 연구)

  • 이택준;김윤중
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.11a
    • /
    • pp.721-727
    • /
    • 2003
  • This study designed and implemented a system to extract of vowel from a word. The system is comprised of a voice feature extraction module and a neutral network module. The voice feature extraction module use a LPC(Linear Prediction Coefficient) model to extract a voice feature from a word. The neutral network module is comprised of a learning module and voice recognition module. The learning module sets up a learning pattern and builds up a neutral network to learn. Using the information of a learned neutral network, a voice recognition module extracts a vowel from a word. A neutral network was made to learn selected vowels(a, eo, o, e, i) to test the performance of a implemented vowel extraction recognition machine. Through this experiment, could confirm that speech recognition module extract of vowel from 4 words.

  • PDF

Voice Recognition Performance Improvement using the Convergence of Voice signal Feature and Silence Feature Normalization in Cepstrum Feature Distribution (음성 신호 특징과 셉스트럽 특징 분포에서 묵음 특징 정규화를 융합한 음성 인식 성능 향상)

  • Hwang, Jae-Cheon
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.13-17
    • /
    • 2017
  • Existing Speech feature extracting method in speech Signal, there are incorrect recognition rates due to incorrect speech which is not clear threshold value. In this article, the modeling method for improving speech recognition performance that combines the feature extraction for speech and silence characteristics normalized to the non-speech. The proposed method is minimized the noise affect, and speech recognition model are convergence of speech signal feature extraction to each speech frame and the silence feature normalization. Also, this method create the original speech signal with energy spectrum similar to entropy, therefore speech noise effects are to receive less of the noise. the performance values are improved in signal to noise ration by the silence feature normalization. We fixed speech and non speech classification standard value in cepstrum For th Performance analysis of the method presented in this paper is showed by comparing the results with CHMM HMM, the recognition rate was improved 2.7%p in the speech dependent and advanced 0.7%p in the speech independent.

The Effect of Auditory Condition on Voice Parameter of Orofacial Pain Patient (청각 환경이 구강안면 통증환자의 음성 파라미터에 미치는 영향)

  • Lee, Ju-Young;Baek, Kwang-Hyun;Hong, Jung-Pyo
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.4
    • /
    • pp.427-432
    • /
    • 2005
  • This study have been compared and analyzed voice parameter under the condition of normal voice and auditory condition(noise and music) for 29 patients of orofacial pain and 31 normal people to investigate voice feature and vocal variation for auditory condition of orofacial pain patient. 1. Compared to normal voice, orofacial pain patient showed lower and unstable voice feature which has low F0 rate and high jitter and shimmer rate. 2. Voice of orofacial pain patient showed more relaxed and stable voice feature with low F0 and shimmer rate in the music condition than noise condition. 3. Normal people's voice has no significant difference between music and noise condition even though it has high F0 rate under the noise condition. As a result, orofacial pain patient showed difference of feature and different response for external auditory condition compared to normal voice. Providing of positive emotional environment such as music could be considered for better outcome of oral facial pain patient's functional disability.

Voice Activity Detection in Noisy Environment using Speech Energy Maximization and Silence Feature Normalization (음성 에너지 최대화와 묵음 특징 정규화를 이용한 잡음 환경에 강인한 음성 검출)

  • Ahn, Chan-Shik;Choi, Ki-Ho
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.169-174
    • /
    • 2013
  • Speech recognition, the problem of performance degradation is the difference between the model training and recognition environments. Silence features normalized using the method as a way to reduce the inconsistency of such an environment. Silence features normalized way of existing in the low signal-to-noise ratio. Increase the energy level of the silence interval for voice and non-voice classification accuracy due to the falling. There is a problem in the recognition performance is degraded. This paper proposed a robust speech detection method in noisy environments using a silence feature normalization and voice energy maximize. In the high signal-to-noise ratio for the proposed method was used to maximize the characteristics receive less characterized the effects of noise by the voice energy. Cepstral feature distribution of voice / non-voice characteristics in the low signal-to-noise ratio and improves the recognition performance. Result of the recognition experiment, recognition performance improved compared to the conventional method.

An Acoustic Phonetic Study about Voice Imitation(2) -Focusing on Prosody Feature- (모방발화에 대한 음향음성학적 연구(2) -운율 특징을 중심으로-)

  • Park Miyoung;Park Jihye;Shin Jiyoung;Kang Sunmee
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.56-60
    • /
    • 2003
  • The purpose of this paper is to research voice imitation. Voice imitation changes various phonetic feature. Also, in our experimental results, voice imitation has preferential prosody difference. For imitating voice, imitators change their fundamental frequency bandwidths for the most part. Imitative speakers change their high fundamental frequencies effectively while they maintain their low fundamental frequencies. Also, excellent group is distinctly superior to common group for imitating prosodic patterns. That is, the f0 bandwidth's change and the prosodic patterns are significant in imitating voice. But the low f0 is maintain by all speakers.

  • PDF

Robust Feature Extraction for Voice Activity Detection in Nonstationary Noisy Environments (음성구간검출을 위한 비정상성 잡음에 강인한 특징 추출)

  • Hong, Jungpyo;Park, Sangjun;Jeong, Sangbae;Hahn, Minsoo
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2013
  • This paper proposes robust feature extraction for accurate voice activity detection (VAD). VAD is one of the principal modules for speech signal processing such as speech codec, speech enhancement, and speech recognition. Noisy environments contain nonstationary noises causing the accuracy of the VAD to drastically decline because the fluctuation of features in the noise intervals results in increased false alarm rates. In this paper, in order to improve the VAD performance, harmonic-weighted energy is proposed. This feature extraction method focuses on voiced speech intervals and weighted harmonic-to-noise ratios to determine the amount of the harmonicity to frame energy. For performance evaluation, the receiver operating characteristic curves and equal error rate are measured.

Gender Classification of Speakers Using SVM

  • Han, Sun-Hee;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.59-66
    • /
    • 2022
  • This research conducted a study classifying gender of speakers by analyzing feature vectors extracted from the voice data. The study provides convenience in automatically recognizing gender of customers without manual classification process when they request any service via voice such as phone call. Furthermore, it is significant that this study can analyze frequently requested services for each gender after gender classification using a learning model and offer customized recommendation services according to the analysis. Based on the voice data of males and females excluding blank spaces, the study extracts feature vectors from each data using MFCC(Mel Frequency Cepstral Coefficient) and utilizes SVM(Support Vector Machine) models to conduct machine learning. As a result of gender classification of voice data using a learning model, the gender recognition rate was 94%.