• Title/Summary/Keyword: Vitamin C content

Search Result 865, Processing Time 0.029 seconds

Development and Quality of Dried Cherry-Tomatoes (건조방울토마토 제조와 품질 특성)

  • 윤경영;김미현;이광희;신승렬
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1283-1287
    • /
    • 1999
  • This study was carried out to develop new processed food from cherry tomatoes. The dried cherry tomatoes were prepared by using a sequence of osmotic dehydration, air drying, vacuum drying and freeze drying. The moisture contents of dried cherry tomato products by nontreatment and osmosis treatment were about 11~13% and 7.5~ 10%, respectively. The vitamin C contents of the dried product after osmotic dehydration were higher than those of the dried products by nontreatment. The vitamin C content of the freezing dried product was the highest of the others. The vacuum dried product by nontreatment was retained color of fresh fruit in the change of color. The ΔE value of the air dried product was lower than those of the others. As a result to microscopic analysis, fresh cherry tomato was observed regular tissue, while cherry tomato treated by osmosis was observed a cell collapse following the loss of water. The dried product had cell shrinkage and dense tissue. And the cell wall of dried products after osmotic dehydration were much more damage than those of nontreatment dried product. The palatability of the air dried product was the best of three drying methods. The dried cherry tomatoes treated by osmosis were superior to the dried cherry tomatoes by nontreatment.

  • PDF

Characterization of Mixed Apple and Carrot Retentates Using Response Surface Methodology

  • Lee, Jun-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.2
    • /
    • pp.155-159
    • /
    • 2006
  • Models capable of predicting the product quality of mixed apple and carrot retentates (MACR) have been developed using response surface methodology and used to characterize the effects of processing conditions including average transmembrane pressure (ATP), temperature, and blend ratio. Color, soluble solids, total sugar, vitamin C, acidity, turbidity, and viscosity were used to assess the product quality following the ultrafiltration (UF) process. $L^*-value$ decreased with increased ATP, but the value was not affected by changes in temperature. Blend ratio also greatly influenced the $L^*-value$. Redness ($a^*-value$), on the other hand, was less affected by temperature and ATP. As the ATP and temperature increased, yellowness increased gradually. Soluble solids contents appeared to decrease gradually as the ATP increased for all blend samples, but the effect of temperature seemed to be less. Total sugar content was more affected by temperature than ATP. In general, samples containing 75% carrot had higher amounts of vitamin C regardless of processing conditions. Changes in acidity were also complex and appeared to respond to interactions among ATP, temperature, and blend ratio. Turbidity increased for all samples as both ATP and temperature increased. The higher the amount of carrot in the blend samples, the higher values for turbidity. Although the changes were small, viscosity appeared to increase as the ATP and temperature increased during UF.

Comparative Evaluation of Physicochemical Properties of Pine Needle Powders Prepared by Different Drying Methods

  • Chung, Ha-Sook;Lee, Jun Ho
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.2
    • /
    • pp.143-147
    • /
    • 2015
  • Systematic study of how different drying methods, namely hot-air drying, vacuum-drying, and freeze-drying, affect color, browning index, degree of rehydration, water solubility, and vitamin C content is critical for utilizing pine needle powders (PNP) as a novel ingredient in functional foods. Samples prepared by vacuum-drying showed a significantly higher $L^*$-value, whereas higher $a^*$- and $b^*$-values were detected in the hot-air dried samples (P<0.05). The browning index was significantly higher in samples prepared by vacuum-drying compared to samples prepared by freeze-drying (P<0.05). Freeze-dried PNP exhibited a significantly higher degree of rehydration than hot-air dried samples (P<0.05). Water solubilities of freeze-dried and hot-air dried samples were significantly higher than that of vacuum-dried sample (P<0.05). Vitamin C was less destroyed during freeze-drying compared to hot-air or vacuum-drying (P<0.05). Freeze-dried samples displayed a clear porous structure and appeared to have a bigger space, whereas hot-air dried samples showed lower porosity than vacuum and freeze-dried samples.

An Amperometric Proton Selective Sensor with an Elliptic Microhole Liquid/Gel Interface for Vitamin-C Quantification

  • Faisal, Shaikh Nayeem;Hossain, Md. Mokarrom;Lee, Hye-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • An amperometric ascorbic acid selective sensor utilizing the transfer reaction of proton liberated from the dissociation of ascorbic acid in aqueous solution across an elliptic micro-hole water/organic gel interface is demonstrated. This redox inactive sensing platform offers an alternative way for the detection of ascorbic acid to avoid a fouling effect which is one of the major concerns in redox based sensing systems. The detection principle is simply measuring the current change with respect to the assisted transfer of protons by a proton selective ionophore (e.g., ETH 1778) across the micro-hole interface between the water and the polyvinylchloride-2-nitrophenyloctylether gel phase. The assisted transfer reaction of protons generated from ascorbic acid across the polarized micro-hole interface was first characterized using cyclic voltammetry. An improved sensitivity for the quantitative analysis of ascorbic acid was achieved using differential pulse stripping voltammetry with a linear response ranging from 1 to $100\;{\mu}M$ concentrations of ascorbic acid. As a demonstration, the developed sensor was applied for analyzing the content of vitamin-C in different types of commercial pharmaceutical tablets and syrups, and a satisfactory recovery from these samples were also obtained.

The investigation of Appropriate Hydroponic System for Cherry Tomatoes in Summer Season (방울토마토의 여름재배시 적정수경재배방식 구명)

  • 김영식
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.53-57
    • /
    • 1993
  • This study was carried out to investigate the appropriate hydroponic system when cherry tomatoes were grown in summer. The base diameter of the trunk, leaf length, leaf width, and the length of cluster were good in deep flow culture(DFC), and not different between NFT and rockwool culture. The first time of flowering and the fruit coloring per cluster were not different among cultural systems, but the marketable yields were good in DFC. In DFC, % dry weight, firmness, the content of organic acid and sugar were low, and the ratio of sugar/organic acid and vitamin C were high. So DFC is recommended for the summer cultivation of cherry tomatoes.

  • PDF

Changes of Characteristics in Red Pepper by Various Freezing and Thawing Methods (홍고추의 저장온도 및 해동조건에 따른 물리화학적 특성 변화)

  • Lee, Hye-Eun;Lim, Chai-Il;Do, Kyung-Ran
    • Food Science and Preservation
    • /
    • v.14 no.3
    • /
    • pp.227-232
    • /
    • 2007
  • The development of an effective long-term storage protocol for harvested fresh pepper is urgently required to increase the market for pepper products. The protocol must minimize quality loss, so that the product may be used either as a spice or as a raw material for processed pepper products, both in the home and in food processing plants. We investigated the optimum size of pepper fruits, freezing temperatures, storage periods, and thawing methods, to establish an optimum storage protocol. This study was conducted not only to develop freezing and thawing methods for long term storage of harvested red pepper, but also to develop processed pepper products utilizing the stored pepper. We aimed to expand the pepper products market and to increase the incomes of pepper growers. Whole red pepper, sliced red pepper, and crushed red pepper were frozen and stored at $-5^{\circ}C,\;-20^{\circ}C,\;or\;-40^{\circ}C$. The soluble solid content and the vitamin C level showed maximal stability at $-40^{\circ}C$, although total free sugars decreased on storage at all temperatures tested. Such Changes were more marked at $-5^{\circ}C$ than at the other(lower) temperature tested. The vitamin C content of whole red pepper was higher than that of sliced red pepper or crushed red pepper. Room-temperature thawing resulted in twice the drip loss seen on low temperature($5^{\circ}C$) thawing or microwave oven thawing. Brown discoloration was a serious problem with room temperature thawing. Total free sugars were higher in samples thawed at low temperature or in the microwave oven, compared to the level seen after room-temperature thawing. pepper samples thawed at low temperature scored higher in sensory tests than samples thawed at room temperature.

Post-harvest LED and UV-B Irradiation Enhance Antioxidant Properties of Asparagus Spears (수확 후 LED와 UV-B 조사에 의한 아스파라거스 순의 항산화 기능 향상)

  • Yoo, Nam-Hee;Jung, Sun-Kyun;Lee, Chong Ae;Choi, Dong-Geun;Yun, Song Joong
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.188-198
    • /
    • 2017
  • Asparagus (Asparagus officinalis L.) spears were treated with white (color temperature 4,500 k), blue (peak 450 nm), and red (peak 660 nm) light-emitting diodes (LEDs) at a photosynthetic photon flux density (PPFD) of $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for 12 h, and UV-B (280 nm) at 0.5 kJ or 1.0 kJ to determine the effect on agronomic characteristics, antioxidant phytochemicals, and antioxidant activity. The fresh weight, length, and width of spears were not affected by light quality treatments. The free sugars and chlorophyll contents were increased by 9 and 41%, respectively in the UV-0.5 kJ treatments. Among the antioxidant phytochemicals (vitamin C, total phenol, rutin, and total flavonoid), vitamin C was most greatly affected by the light treatments. Vitamin C content was significantly increased in asparagus spears subjected to the white (114%), red (137%), and UV-0.5 kJ(127%) treatments compared to the control. By contrast, rutin, total phenol, and total flavonoid content were increased only in samples subjected to the red and UV-0.5 kJ treatment. Furthermore, antioxidant activity, as measured by DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, increased in white, red, and UV-0.5 kJ treatments by about 43, 41, and 43%, respectively, compared to the control. These results suggest that postharvest treatment of asparagus spears with red light at $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for 12 h or with UV-B (280 nm) at 0.5 kJ could enhance the functional quality of the asparagus spears by increasing the content of phytochemicals like vitamin C, rutin, total phenolics, and total flavonoids.

Chemical compositions and antioxidant activities depending on cultivation methods and various parts of yuza (유자 재배방법에 따른 부위별 화학적 성분 및 항산화 활성)

  • Lee, Jong Eun;Kim, Kyung Mi;Kim, Jin Sook;Kim, Gi Chang;Choi, Song Yi;Kim, Sang Bum
    • Food Science and Preservation
    • /
    • v.24 no.6
    • /
    • pp.802-812
    • /
    • 2017
  • This study was conducted to investigate the quality properties depending on the cultivation methods (general, organic, pesticide-free) of yuza and its various parts (peel, pulp, seed). The contents of hesperidin were the highest in yuza feel grown by pesticide-free method (13.23 mg/g). The contents of naringin presented a higher content in the peel, especially which of the general (4.62 mg/g) showed the highest value. Vitamin C analysis showed the highest content in the peel, significantly varied according to the cultivation method and various parts (p<0.05). Vitamin C value was significantly highest in organic peel, which was 770.02 mg/100 g, whereas among the peel, the pulp and the seed were it the lowest in the seed. The content of total polyphenols were the highest in general peel (0.85 mg/g). Flavonoid content of pesticide-free seed was significantly higher than those of the other yuja samples which was 0.89 mg/g (p<0.05). The DPPH radical scavenging activity was relatively more active in the peel among the above-mentioned three parts, especially the pesticide-free peel was most active, which was 73.94%. The ABTS radical scavenging activity of organic peel was significantly active among the samples, which was 84.47% (p<0.05). Based on these results, it can be said that yuja has variety of useful components in the pulp and the seed as well as the peel: and thus it's hight recommended to develop more varied yuja products.

Changes in physicochemical properties of Peucedanum japonicum Thunb. after blanching (Blanching에 따른 갯기름 나물의 이화학적 특성 변화)

  • Son, Hee-Kyoung;Kang, Su-Tae;Jung, Hae-Ok;Lee, Jae-Joon
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.628-635
    • /
    • 2013
  • This study was conducted to investigate the changes in the physicochemical properties of Peucedanum japonicum Thunb. after blanching. After blanching treatment, the crude protein content decreased but did not affect the crude fat, crude ash and carbohydrate contents of P. japonicum. All the detected free sugar contents decreased after blanching, but the total free sugar content decreased by 14.8% from that of the raw P. japonicum after blanching. The total amino acid and essential amino acid contents of the blanched P. japonicum. decreased by 10.75% and 15.22% from those of the raw P. japonicum. There were no differences in the contents of the total fatty acid between the raw and blanched P. japonicum. The total organic acid content decreased by 37.03% from that of the raw P. japonicum. after the blanching, and the reduction of the acetic acid was largest in the organic acid. The vitamin A, C and E contents decreased by 20.20%, 8.23% and 35.59% after the blanching. The total mineral content of the blanched P. japonicum. decreased by 21.84% after the blanching. The nutrients in the P. japonicum were essential amino acid, vitamin C, minerals, but these were reduced after the blanching. Therefore, the blanching conditions that can reduce nutrient loss of P. japonicum must be established.

Analysis of General Components and Vitamin and Mineral Contents of the Mushroom Agrocybe chaxingu (차신고버섯(Agrocybe chaxingu)의 일반성분, 비타민 및 미네랄 함량분석)

  • Lee, Kwang-Jae;Yun, In-Jue;Kim, Hee-Yeon;Park, Yu-Hwa;Ham, Hun-Ju;Park, Young-Hak;Joo, Jin-Ho;Lim, Sang-Hyun;Kim, Kyung-Hee
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.549-553
    • /
    • 2009
  • The mushroom Agrocybe chaxingu was analyzed to evaluate the nutritional value of this potential food. The moisture content was 88.9% in the fruiting body of A. chaxingu, and the proportions of ash, crude fiber, carbohydrate, crude protein, and crude fat were 0.9%, 1.4%, 7.2%, 2.5% and 0.4% by weight, respectively. A. chaxingu contained 1.29 mg/100 g edible weight of vitamin $B_1$, and the contents of vitamin $B_2$, vitamin $B_3$, and vitamin C were 0.15 mg, 0.32 mg, and 18.4 mg per 100 g of wet mushroom. Potassium (3,318 mg/100 g, dry basis) was found at the highest concentration in A. chaxingu. In addition, the mushroom contained many other minerals (all figures are mg per 100 g of dried mushroom) such as phosphorus (909.7), magnesium (141.3), sodium (12.7), zinc (7.4), iron (6.5), copper (2.8), manganese (0.8), and nickel (0.1). The results indicate that A. chaxingu is a valuable nutrient source.