• Title/Summary/Keyword: Vital energy

Search Result 397, Processing Time 0.025 seconds

Microbial population dynamics in constructed wetlands: Review of recent advancements for wastewater treatment

  • Rajan, Rajitha J.;Sudarsan, J.S.;Nithiyanantham, S.
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • Constructed wetlands are improvised man-made systems, designed for adopting the principle of natural wetlands for purifying wastewater - the elixir of life. They are used widely as a cost-effective and energy-efficient solution for treating greywater generated from different tertiary treatment sources. It provides an elaborate platform for research activities in an attempt to recycle earth's natural resources. Among the several organic impurities removal mechanisms existing in constructed wetland systems, the earth's active microbial population plays a vital role. This review deals with the recent advancements in constructed wetland systems from a microbiological perspective to (effect/ devise/ formulate) chemical and physical treatment for water impurities. It focuses on microbial diversity studies in constructed wetlands, influence of wetland media on microbial diversity and wetland performance, role of specific microbes in water reuse, removal of trace elements, some heavy metals and antibiotics in constructed wetlands. The impurities removal processes in constructed wetlands is achieved by combined interactive systems such as selected plant species, nature of substrate used for microbial diversity and several biogeochemical effected reaction cycles in wetland systems. Therefore, the correlation studies that have been conducted by earlier researchers in microbial diversity in wetlands are addressed herewith.

Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands

  • Tran, An Thi Phuong;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.475-483
    • /
    • 2019
  • Vegetation cover plays a vital role in stabilizing the soil structure, thereby contributing to surface erosion control. Surface vegetation acts as a shelterbelt that controls the flow velocity and reduces the kinetic energy of the water near the soil surface, whereas vegetation roots reinforce the soil via the formation of root-particle interactions that reduce particle detachment. In this study, two vegetation-testing trials were conducted. The first trial was held on cool-season turfgrasses seeded in a biopolymer-treated site soil in an open greenhouse. At the end of the test, the most suitable grass type was suggested for the second vegetation test, which was conducted in an environmental control chamber. In the second test, biopolymers, namely, starch and xanthan gum hydrogels (pure starch, pure xanthan gum, and xanthan gum-starch mixtures), were tested as soil conditioners for improving the water-holding capacity and vegetation growth in sandy soils. The results support the possibility that biopolymer treatments may enhance the survival rate of vegetation under severe drought environments, which could be applicable for soil stabilization in arid and semiarid regions.

Skew Compensation Algorithm for Time Synchronization in Wireless Sensor Networks (무선 센서 네트워크 시간 동기화에 대한 왜곡 보정 알고리즘)

  • Kumar, Shiu;Keshav, Tushar;Jo, Dong Hyeon;Kim, Hui;Lee, Jae Yeong;Jeon, Hye Ji;Jeong, Min A;Lee, Seong-Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.495-497
    • /
    • 2013
  • Wireless sensor networks (WSNs) have emerged as an attractive and key research area over the last decade. Time synchronization is a vital part of infrastructure for any distributed system. In embedded sensor networks, time synchronization is an essential service for correlating data among nodes and communication scheduling. This is realized by exchanging messages that are time stamped using the local clocks on the nodes. Various time synchronization protocols have been proposed aiming to attain high synchronization accuracy, high efficiency and low communication overhead. However, it requires that the time between resynchronization intervals to be as large as possible to obtain a system which is energy efficient having low communication overhead. This paper presents a simple but effective skew compensation algorithm that measures the skew rate of the sensor nodes with respect to the reference node and calibrates itself to compensate for the difference in the frequencies of the nodes. The proposed method can be incorporated with any existing time synchronization protocol for WSNs.

An Empirical Approach to Analyze Creep Rupture Behavior of P91 Steel

  • Aslam, Muhammad Junaid;Gur, Cemil Hakan
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.255-263
    • /
    • 2021
  • P91 steel has been a highly researched material because of its applicability for high-temperature applications. Considerable efforts have been made to produce experimental creep data and develop models for creep life prediction. As creep tests are expensive and difficult to conduct, it is vital to develop authenticated empirical methods from experimental results that can be utilized for better understanding of creep behavior and can be incorporated into computational models for reliable prediction of creep life. In this research, a series of creep rupture tests are performed on the P91 specimens within a stress range of 155 MPa to 200 MPa and temperature range of 640 ℃ (913 K) to 675 ℃ (948 K). The microstructure, hardness, and fracture surfaces of the specimens are investigated. To analyze the results of the creep rupture tests at a macro level, a parameter called creep work density is derived. Then, the relationships between various creep parameters such as strain, strain rate, time to rupture, creep damage tolerance factor, and creep work density are investigated, and various empirical equations are obtained.

Highly Active Electrocatalyst based on Ultra-low Loading of Ruthenium Supported on Titanium Carbide for Alkaline Hydrogen Evolution Reaction

  • Junghwan, Kim;Sang-Mun, Jung;Kyu-Su, Kim;Sang-Hoon, You;Byung-Jo, Lee;Yong-Tae, Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.417-423
    • /
    • 2022
  • With the emerging importance of catalysts for water electrolysis, developing efficient and inexpensive electrocatalysts for water electrolysis plays a vital role in renewable hydrogen energy technology. In this study, a 1nm thickness of TiC-supported Ru catalyst for hydrogen evolution reaction (HER) has been successfully fabricated using an electron (E)-beam evaporator and thermal decomposition of gaseous CH4 in a furnace. The prepared Ru/TiC catalyst exhibited an outstanding performance for alkaline hydrogen evolution reaction with an overpotential of 55 mV at 10 mA cm-2. Furthermore, we demonstrated that the outstanding HER performance of Ru/TiC was attributed to the high surface area of the support and the metal-support interaction.

The Effect of Eco-Friendly Interior Designs in the Urban Hotel To Attract Potential Customers

  • Soo-Hee LEE
    • The Journal of Industrial Distribution & Business
    • /
    • v.14 no.5
    • /
    • pp.19-29
    • /
    • 2023
  • Purpose: The hospitality sector is vital to economic development, especially in metropolitan regions, where hotels are a pivotal factor in drawing in leisure and corporate visitors. Despite the potential advantages of urban hotels, there is a gap in empirical studies on the impacts of eco-friendly interior design on hotel appeal and guest behavior. Therefore, this study aims to fill out the research gap. Research design, data and methodology: This study employed a review of the literature systematically as its research design. The study's data collection technique involves exploring peer-reviewed journals through electronic databases like Scopus, and Web of Science. The present author double-checked the quality of instrument for all usable dataset. Results: Prior literature has stated a strong linkage between green interior design in urban hotels and customer behavior and hotel attractiveness. Using environmentally conscious methods, hotels can enhance the quality of their indoor atmosphere, preserve energy and water supplies, and establish a favorable public perception that appeals to environmentally aware consumers, thereby improving their overall experience and contentment. Conclusions: This study concludes that creating indoor spaces with environmental factors in mind could lead to a more enjoyable and beneficial atmosphere for hotel visitors and adopting a sustainability-oriented approach to hotel design and operations could attract potential customers.

Developing an interface strength technique using the laser shock method

  • James A. Smith;Bradley C. Benefiel;Clark L. Scott
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.432-442
    • /
    • 2023
  • Characterizing the behavior of nuclear reactor plate fuels is vital to the progression of advanced fuel systems. The states of pre- and post-irradiation plates need to be determined effectively and efficiently prior to and following irradiation. Due to the hostile post-irradiation environment, characterization must be completed remotely. Laser-based characterization techniques enable the ability to make robust measurements inside a hot-cell environment. The Laser Shock (LS) technique generates high energy shockwaves that propagate through the plate and mechanically characterizes cladding-cladding interfaces. During an irradiation campaign, two Idaho National Laboratory (INL) fabricated MP-1 plates had a fuel breach in the cladding-cladding interface and trace amounts of fission products were released. The objective of this report is to characterize the cladding-cladding interface strengths in three plates fabricated using different fabrication processes. The goal is to assess the risk in irradiating future developmental and production fuel plates. Prior LS testing has shown weaker and more variability in bond strengths within INL MP-1 reference plates than in commercially produced vendor plates. Three fuel plates fabricated with different fabrication processes will be used to bound the bond strength threshold for plate irradiation insertion and assess the confidence of this threshold value.

Crystal Structure of Mesaconyl-CoA Hydratase from Methylorubrum extorquens CM4

  • Jae-Woo Ahn;Jiyeon Hong;Kyung-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.485-492
    • /
    • 2023
  • Methylorubrum extorquens, a facultative methylotroph, assimilates C1 compounds and accumulates poly-β-hydroxylbutyrate (PHB) as carbon and energy sources. The ethylmalonyl pathway is central to the carbon metabolism of M. extorquens, and is linked with a serine cycle and a PHB biosynthesis pathway. Understanding the ethylmalonyl pathway is vital in utilizing methylotrophs to produce value-added chemicals. In this study, we determined the crystal structure of the mesaconyl-CoA hydratase from M. extorquens (MeMeaC) that catalyzes the reversible conversion of mesaconyl-CoA to β-methylmalyl-CoA. The crystal structure of MeMeaC revealed that the enzyme belongs to the MaoC-like dehydratase domain superfamily and functions as a trimer. In our current MeMeaC structure, malic acid occupied the substrate binding site, which reveals how MeMeaC recognizes the β-methylmalyl-moiety of its substrate. The active site of the enzyme was further speculated by comparing its structure with those of other MaoC-like hydratases.

Influence of interfacial adhesive on the failure mechanisms of truss core sandwich panels under in-plane compression

  • Zarei, Mohammad J.;Hatami, Shahabeddin;Gholami, Mohammad
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.519-529
    • /
    • 2022
  • Sandwich structures with the superior mechanical properties such as high stiffness and strength-to-weight ratio, good thermal insulation, and high energy absorption capacity are used today in aerospace, automotive, marine, and civil engineering industries. These structures are composed of moderately stiff, thin face sheets that withstand the majority of transverse and in-plane loads, separated by a thick, lightweight core that resists shear forces. In this research, the finite element technique is used to simulate a sandwich panel with a truss core under axial compressive stress using ABAQUS software. A review of past experimental studies shows that the bondline between the core and face sheets plays a vital role in the critical failure load. Therefore, this modeling analyzes the damage initiation modes and debonding between face sheet and core by cohesive surface contact with traction-separation model. According to the results obtained from the modeling, it can be observed that the adhesive stiffness has a significant influence on the critical failure load of the specimens. To achieve the full strength of the structure as a continuum, a lower limit is obtained for the adhesive stiffness. By providing this limit stiffness between the core and the panel face sheets, sudden failure of the structure can be prevented.

Enhancement of Quick-Charge Performance by Fluoroethylene Carbonate additive from the Mitigation of Electrode Fatigue During Normal C-rate Cycling

  • Tae Hyeon Kim;Sang Hyeong Kim;Sung Su Park;Min Su Kang;Sung Soo Kim;Hyun-seung Kim;Goojin Jeong
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.369-376
    • /
    • 2023
  • The quick-charging performance of SiO electrodes is evaluated with a focus on solid electrolyte interphase (SEI)-reinforcing effects. The study reveals that the incorporation of fluoroethylene carbonate (FEC) into the SiO electrode significantly reduced the electrode fatigue, which is from the the viscoelastic properties of the FEC-derived SEI film. The impact of FEC is attributed to its ability to minimize the mechanical failure of the electrode caused by additional electrolyte decomposition. This beneficial outcome arises from volumetric stain-tolerant characteristics of the FEC-derived SEI film, which limited exposure of the bare SiO surface during 0.5 C-rate cycling. Notably, FEC greatly improves Li deposition during quick-charge cycles following aging at 0.5 C-rate cycling due to its ability to maintain a strong electrical connection between active materials and the current collector, even after extended cycling. Given these findings, we assert that mitigating SEI layer deterioration, which compromises the electrode structure, is vital. Hence, enhancing the interfacial attributes of the SiO electrode becomes crucial for maintaining kinetic efficiency of battery system.