Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.5.255

An Empirical Approach to Analyze Creep Rupture Behavior of P91 Steel  

Aslam, Muhammad Junaid (Department of Metallurgical and Materials Engineering, Middle East Technical University)
Gur, Cemil Hakan (Department of Metallurgical and Materials Engineering, Middle East Technical University)
Publication Information
Korean Journal of Materials Research / v.31, no.5, 2021 , pp. 255-263 More about this Journal
Abstract
P91 steel has been a highly researched material because of its applicability for high-temperature applications. Considerable efforts have been made to produce experimental creep data and develop models for creep life prediction. As creep tests are expensive and difficult to conduct, it is vital to develop authenticated empirical methods from experimental results that can be utilized for better understanding of creep behavior and can be incorporated into computational models for reliable prediction of creep life. In this research, a series of creep rupture tests are performed on the P91 specimens within a stress range of 155 MPa to 200 MPa and temperature range of 640 ℃ (913 K) to 675 ℃ (948 K). The microstructure, hardness, and fracture surfaces of the specimens are investigated. To analyze the results of the creep rupture tests at a macro level, a parameter called creep work density is derived. Then, the relationships between various creep parameters such as strain, strain rate, time to rupture, creep damage tolerance factor, and creep work density are investigated, and various empirical equations are obtained.
Keywords
P91 Type 2 steel; creep life; creep damage; creep work density; strain energy density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Committee E28 of American Society for Testing and Materials, Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials (ASTM A139/ A139M), 11, 4 (2018).
2 F. Vivier, C. Panait, A. F. Gourgues-Lorenzon and J. Besson, Proceedings of 17th European Conference on Fracture, p. 1095, Brno, Czech Republic (2008).
3 C. Panait, W. Bendick, A. Fuchsmann, A. F. Gourgues-Lorenzon and J. Besson, Int. J. Press. Vess. Pip., 87, 326 (2010).   DOI
4 Council of The American Society of Mechanical Engineers, Rules for construction of Power Boilers (I), Nuclear Facility Components (III) & Pressure Vessels (VIII), 2015, 46 (2015).
5 V. K. Sikka and P. Patriarca, Analysis of weldment mechanical properties of modified 9 Cr-1Mo steel, Oak Ridge National Laboratory, Retrieved May 1, 1984 from https://inis.iaea.org/search/search.aspx?orig_q=RN: 17007091.
6 S. Spigarelli, Int. J. Press. Vess. Pip., 101, 64 (2013).   DOI
7 J. P. Sanhueza, D. Rojas, J. Garcia, M. F. Melendrez, E. Toledo, C. Montalba, M. I. Alvarado and A. F. Jaramillo, Mater. Res. Express, 6, 11 (2019).
8 L. Maddi, D. Barbadikar, M. Sahare, A. R. Ballal, D. R. Peshwe, R. K. Paretkar, K. Laha and M. D. Mathew, Trans. Ind. Inst. Met., 68, 259 (2015).   DOI
9 M. A. Abro and D. B. Lee, Coatings, 7, 31 (2017).   DOI
10 M. Akhtar, A. Khajuria, M. K. Pandey, I. Ahmed and R. Bedi, Mater. Res. Express, 6, 12 (2019).
11 M. A. Abro, J. Hahn and D. B. Lee, Korean J. Met. Mater., 57, 236 (2019).   DOI
12 C. Pandey, Mater. Res. Express, 6, 9 (2019).
13 M. Swei, A. S. Sedmak, B. Petrovski, Z. Z. Golubovi, S. A. Sedmak, M. Katini, and K. I. Azzab, Therm. Sci., 23, 1203 (2019).   DOI
14 L. Huijun and D. Mitchell, Steel Res. Int., 84, 1302 (2013).   DOI
15 Committee A01 of American Society for Testing and Materials, Standard Specification for Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service (ASTM A335/A335M), 19, 2 (2019).
16 C. Yunxiang, W. Yan, Hu. Ping, S. Yiyin and K. Yang, Acta Metall. Sin., 47, 1372 (2011).
17 J. Besson, S. Leclercq, V. Gaffard and A. F. Gourgues-Lorenzon, Eng. Fract. Mech., 76, 1460 (2009).   DOI
18 A. Sedmak, M. Swei and B. Petrosvski, Fatig. Fract. Eng. Mater. Struct., 40, 1267 (2017).   DOI
19 T. Masse and Y. Lejeail, Nucl. Eng. Des., 246, 220 (2012).   DOI
20 K. Kimura, K. Suzuki, Y. Toda, H. Kushima and F. Abe, Proceedings of 28th MPA-NIMS Workshop on Safety and Availability in Energy Engineering, 2, p. 43, Stuttgart, Germany (2002).
21 M. T. Whittaker and W. J. Harrison, Mater. High Temp., 31, 233 (2014).   DOI
22 B. Wilshire and M. T. Whittaker, Acta Mater., 57, 4115 (2009).   DOI
23 F. Dyson and T. B. Gibbons, Acta Metall, 35, 2355 (1987).   DOI
24 A. Raj, N. Roy, B. N. Roy and A. K. Ray, High Temp. Mater. Processes (Berlin, Ger.), 34, 731 (2015)
25 B. Wilshire and P. J. Scharning, Mater High Temp., 25, 55 (2014).
26 M. F. Ashby and B. F. Dyson, Proceedings of 6th International Conference on Fracture (ICF6), p. 3, New Delhi, India (1984).
27 M. J. Aslam and C. H. Gur, Proceeding of the 7th International Iron & Steel Symposium, p. 374, Izmir, Turkey (2019).
28 M. E. A. El-Azim, O. H. Ibrahim, O. E. El-Desoky, Mater. Sci. Eng., A, 560, 678 (2013).   DOI
29 B. K. Choudhary and I, S. Edwin, J. Nucl. Mater., 412, 82 (2011).   DOI
30 O. Nassif, T. J. Truster, R. Ma, K. B. Cochran, D. M. Parks, M. C. Messner and T.-L. Sham, Model. Simulat. Mater. Sci. Eng., 27, (2019).
31 V. Gaffard, PhD Thesis, p. 161, Paris School of Mines, Paris (2004).
32 K. Kimura, H. Kushima, K. Sawada, Mater. Sci. Eng., A, 510-511, 58 (2009).   DOI
33 T. Shrestha, M. Basirat, I. Charit, G. P. Potirniche and K. K. Rink, Mater. Sci. Eng., A, 565, 382 (2013).   DOI
34 L. An, Q. Xu, D. Xu and Z. Lou, Proceeding of the 10th International Conference on Science Computing, p. 184, Las Vegas, USA (2013).
35 B. K. Choudhary, C. Phaniraj and B. Raj, Tran. Ind. Inst. Metals, 63, 675 (2010).   DOI