• Title/Summary/Keyword: Vital Signal

Search Result 148, Processing Time 0.034 seconds

Bio-MAC: Optimal MAC Protocol for Various Bio-signal Transmission in the WBSN Environment (Bio-MAC: WBSN환경에서 다양한 생체신호 전송을 위한 최적화된 MAC Protocol)

  • Jang, Bong-Mun;Ro, Young-Sin;Yoo, Sun-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.423-425
    • /
    • 2007
  • In this paper, Medium Access Control(MAC) protocol designed for Wireless Body area Sensor Network(Bio-MAC) is proposed, Because in WBSN, the number of node is limited and each node has different characteristics. Also, reliability in transmitting vital data sensed at each node and periodic transmission should be considered so that general MAC protocol cannot satisfy such requirements of biomedical sensors in WBSN. Bio-MAC aims at optimal MAC protocol in WBSN. For this, Bio-MAC used Pattern -SuperFrame, which modified IEE E 802.15.4-based SuperFrame structurely. Bio-MAC based on TDMA uses Medium Access-priority and Pattern eXchange -Beacon method for dynamic slot allocation by considering critical sensing data or power consumption level of sensor no de etc. Also, because of the least delay time. Bio-MAC is suitable in the periodic transmission of vital signal data. The simulation results demonstrate that a efficient performance in WBSN can be achieved through the proposed Bio-MAC.

  • PDF

Vital Sign Monitoring System with Routing and Query of Wireless Sensor Node on Mobile Environment (모바일 환경에서 질의응답이 가능한 무선센서노드 라우팅 생체신호 모니터링 시스템)

  • Lee, Seung-Chul;Toh, Sing-Hui;Do, Kyeong-Hoon;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.357-360
    • /
    • 2008
  • Vital sign monitoring system using IEEE 502.IS.4 based wireless sensor network(WSN) is designed and developed on mobile environment and sensor node platform. WSN and CDMA are integrated to create a wide coverage to support various environments like inside and outside. We developed query processor to use selective any devices(ECG, Blood pressure and sugar module) and control of the self-organizing network of sensor nodes in a wireless sensor network. Vital sign from wireless medical any devices are analysed in cell phone first for real time signal analyses and the abnormal vital signs are sent and save to hospital server for detail signal processing. wireless signal traffic in wireless sensor network environment or data communication inside the cell phone is reduced.

  • PDF

A study on WSN based ECG and body temperature measuring system for ubiquitous healthcare: 2. Vital signal monitoring software system (유비쿼터스 헬스케어를 위한 센서 네트워크 기반의 심전도 및 체온 측정 시스템: 2. 생체신호 모니터링 소프트웨어 시스템)

  • Lee, Dae-Seok;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.417-424
    • /
    • 2006
  • An ubiquitous healthcare monitoring system for elderly person at home was designed for continuous healthy monitoring of elderly person or patients. Human vital signals, such as ECG and body temperature, were monitored by terminal PC or PDA via ECG and temperature sensor nodes on the patient's body. From the ECG data, the heart rate, tachycardia, bradycardia and arrhythmia were diagnosed on the terminal PC or PDA to assist doctor's or nurse's aid or patient itself to monitor the patient's condition and give medical examination. Artificial judgement support system was designed in server computer and the system support a doctor or nurser for management or treatment of the patient. This system can be applied to vital signal monitoring system for solitude elderly person at self house or home health care service part. And this ubiquitous healthcare system can reduce the medical expenses in coming aging or aged society.

Implementation of a system to analyze user behavior patterns based on vital signs and user locations (생체신호와 위치인식기반 사용자 행동패턴 분석 시스템 개발)

  • Joo, Moon-Il;Chung, Gi-Soo;Kim, Hee-Cheol
    • Smart Media Journal
    • /
    • v.3 no.4
    • /
    • pp.35-40
    • /
    • 2014
  • As small sized bio-sensors and digital yarns are developed, digital wear measuring vital signs can be used for individuals' health, the elderly care and sports activities. This paper discusses a database structure for analyzing stress state, pulses, positions, exercise amount of user based on vital signs measured for 24 hours measured by the wear and GPS information, and a storage for storing XML documents following a standard HL7 meta-model. By analyzing the stored information, the system identifies the stress state and exercise amount of users. Pulses, exercise intensity and emergency situations can be also detected by the system in real time. This paper discusses the implementation of a system enabling to acquire and analyze vital signals to understand user behavior patterns.

Design of Integrated medical sensor node and Mobile Vital Healthcare diagnosis System (통합형 메디컬센서노드와 모바일 환자생체정보 관리 시스템 설계)

  • Lee, Seung-chul;Gwon, Tae-Ha;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.302-305
    • /
    • 2009
  • The Multiple vital signs management system using Mobil phone is designed with Wireless sensor network and CDMA which are integrated to create a wide coverage to support various environments like inside and outside of hospital. Health signals from medical sensor node are analysed in cell phone first for real time signal analyses and then the abnormal vital signs are sent and save to hospital server for detail signal processing and doctor's diagnosis. We developed integrated vital access processor of sensor node to use selective medical interface(ECG, Blood pressure and sugar module) and control the self-organizing network of sensor nodes in a wireless sensor network. chronic disease such as heart disease and diabetes is able to check using graph view in mobile phone.

  • PDF

Research for a Emergency Medical Information Transmission System using High-Speed Downlink Packet Access (고속 하향 패킷 접속 통신을 이용한 응급 의료 정보 전송 시스템 구축에 관한 연구)

  • Jung, Jin;You, Jae-Young;Kim, Eong-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.131-132
    • /
    • 2008
  • It is necessary to develop a high-speed wireless transmission system, which is able to send medical informations to the emergency medical center during emergency patient transportation. In this research, a system which transmits patient’s vital signs and a real-time audio/video contents of the event has been designed, developed, and the suitability of the system has been verified. Test results indicate that the system is capable of transmitting vital signal data, including 17 numeric data, 12 waveforms and 113 events, reading the affected part by forwarding a $320{\times}240$ pixel image at 2fps. Also, the full-duplex voice transmission of the system at 8bit/64kbps is enough to make stable communication between emergency medical technicians and hospital professionals possible. After numerous hours of driving, the packet loss of patient vital signs is 0.013%.

  • PDF

Remote Vital Signal Monitoring System Based on Wireless Sensor Network Using Ad-Hoc Routing

  • Walia Gaurav;Lee Young-Dong;Chung Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.2
    • /
    • pp.67-70
    • /
    • 2006
  • A distributed healthcare monitoring system prototype for clinical and trauma patients was developed, using wireless sensor network node. The proposed system aimed to measure various vital physiological health parameters like ECG and body temperature of patients and elderly persons, and transfer his/her health status wirelessly in Ad-hoc network to remote base station which was connected to doctor's PDA/PC or to a hospital's main Server using wireless sensor node. The system also aims to save the cost of healthcare facility for patients and the operating power of the system because sensor network is deployed widely and the distance from sensor to base station was shorter than in general centralized system. The wireless data communication will follow IEEE 802.15.4 frequency communication with ad-hoc routing thus enabling every motes attached to patients, to form a wireless data network to send data to base-station, providing mobility and convenience to the users in home environment.

Development of Reflected Type Photoplethysmorgraph (PPG) Sensor with Motion Artifacts Reduction (생명신호 측정용 반사형 광용적맥파 측정기의 움직임에 의한 신호왜곡 제거)

  • Han, Hyo-Nyoung;Lee, Yun-Joo;Kim, Jung-Sik;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.146-153
    • /
    • 2009
  • One of the most important issues in the wearable healthcare sensors is to minimize the motion artifacts in the vital signals for continuous monitoring. This paper presents a reflected type photoplethysmograph (PPG) sensor for monitoring heart rates at the artery of the wrist. Active noise cancellation algorithm was applied to compensate the distorted signals by motions with Least Mean Square (LMS) adaptive filter algorithms, using acceleration signals from a MEMS accelerometer. Experiments with a watch type PPG sensor were performed to validate the proposed algorithm during typical daily motions such as walking and running. The developed sensor is suitable for ubiquitous healthcare system and monitoring vital arterial signals during surgery.

Detection of Human Vital Signs and Estimation of Direction of Arrival Using Multiple Doppler Radars

  • An, Yong-Jun;Jang, Byung-Jun;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.250-255
    • /
    • 2010
  • This paper presents a non-contact measurement method of vital signal by the use of multiple-input multiple-output (MIMO) bio-radar system, configured with two antennas that are separated by a certain distance. The direction of arrival (DOA) estimation algorithm for coherent sources was applied to detect vital signals coming from different spatial angles. The proposed MIMO bio-radar system was composed of two identical transceivers sharing single VCO with a PLL. In order to verify the performance of the system, the DOA estimation experiment was completed with respect to the human target at angles varying between $-50^{\circ}$ and $50^{\circ}$ where the bio-radar system was placed at distances (corresponding to 50 cm and 95 cm) in front of a human target. The proposed MIMO bio-radar system can successfully find the direction of a human target.

Signal Interlocking System of a Programmable Logic Controller Improvement Report (신호보안설비 전자연동장치(PLC) 개선 관련 보고)

  • Seok, Tae-Woo;Ko, Yang-Og;Yoo, Do-Gyun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.623-628
    • /
    • 2007
  • Metro Subway System is widely known as the leader of public transportation in a metropolitan area. The signal interlocking is one of the most important organs that plays a major role in the system. By improving the quality of signal interlocking on of the traffic system and keeping its maintenance on a high level will not only repair the current state, but it will also let the PLC(Programmable Logic Controller). The Non-Vital relay of No. 3, 4 Line are the most one of the unstable system, device, which underwent a process of fine manufacture establishment and a close examination, obtained as a new device. Utilizing the equipment with cautious preservation on the system will enhance the current state of the signal device. Especially, the test for improvement and development based upon the technique that decreases the frequency of defect produced will further precipitate its efficiency. With authorization of imposing the newly made equipment will bring improvement to the signal technology and to the industry at largest extent.

  • PDF