• Title/Summary/Keyword: Visualization of information

Search Result 2,143, Processing Time 0.029 seconds

Research Trends in Record Management Using Unstructured Text Data Analysis (비정형 텍스트 데이터 분석을 활용한 기록관리 분야 연구동향)

  • Deokyong Hong;Junseok Heo
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.23 no.4
    • /
    • pp.73-89
    • /
    • 2023
  • This study aims to analyze the frequency of keywords used in Korean abstracts, which are unstructured text data in the domestic record management research field, using text mining techniques to identify domestic record management research trends through distance analysis between keywords. To this end, 1,157 keywords of 77,578 journals were visualized by extracting 1,157 articles from 7 journal types (28 types) searched by major category (complex study) and middle category (literature informatics) from the institutional statistics (registered site, candidate site) of the Korean Citation Index (KCI). Analysis of t-Distributed Stochastic Neighbor Embedding (t-SNE) and Scattertext using Word2vec was performed. As a result of the analysis, first, it was confirmed that keywords such as "record management" (889 times), "analysis" (888 times), "archive" (742 times), "record" (562 times), and "utilization" (449 times) were treated as significant topics by researchers. Second, Word2vec analysis generated vector representations between keywords, and similarity distances were investigated and visualized using t-SNE and Scattertext. In the visualization results, the research area for record management was divided into two groups, with keywords such as "archiving," "national record management," "standardization," "official documents," and "record management systems" occurring frequently in the first group (past). On the other hand, keywords such as "community," "data," "record information service," "online," and "digital archives" in the second group (current) were garnering substantial focus.

Comparative Analysis of Low Fertility Response Policies (Focusing on Unstructured Data on Parental Leave and Child Allowance) (저출산 대응 정책 비교분석 (육아휴직과 아동수당의 비정형 데이터 중심으로))

  • Eun-Young Keum;Do-Hee Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.769-778
    • /
    • 2023
  • This study compared and analyzed parental leave and child allowance, two major policies among solutions to the current serious low fertility rate problem, using unstructured data, and sought future directions and implications for related response policies based on this. The collection keywords were "low fertility + parental leave" and "low fertility + child allowance", and data analysis was conducted in the following order: text frequency analysis, centrality analysis, network visualization, and CONCOR analysis. As a result of the analysis, first, parental leave was found to be a realistic and practical policy in response to low fertility rates, as data analysis showed more diverse and systematic discussions than child allowance. Second, in terms of child allowance, data analysis showed that there was a high level of information and interest in the cash grant benefit system, including child allowance, but there were no other unique features or active discussions. As a future improvement plan, both policies need to utilize the existing system. First, parental leave requires improvement in the working environment and blind spots in order to expand the system, and second, child allowance requires a change in the form of payment that deviates from the uniform and biased system. should be sought, and it was proposed to expand the target age.

Dashboard Design for Evidence-based Policymaking of Sejong City Government (세종시 데이터 증거기반 정책수립을 위한 대시보드 디자인에 관한 연구)

  • Park, Jin-A;An, Se-Yun
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.12
    • /
    • pp.173-183
    • /
    • 2019
  • Sejong, Korea's special multifunctional administrative city, was created as a national project to relocated government ministries, the aim being to pursue more balanced regional economic development and boost national competitiveness. During the second phase development will focus on mitigating the challenges raised due to the increasing population and urbanization development. All of infrastructure, apartments, houses, private buildings, commercial structures, public buildings, citizens are producing more and more complex data. To face these challenges, Sejong city governments and policy maker recognizes the opportunity to ensure more enriched lives for citizen with data-driven city management, and effectively exploring how to use existing data to improve policy services and a more sustainable economic policy to enhance sustainable city management. As a city government is a complex decision making system, the analysis of astounding increase in city dada is valuable to gain insight in the affecting traffic flow. To support the requirement specification and management of government policy making, the graphic representation of information and data should be provide a different approach in the intuitive way. With in context, this paper outlines the design of interactive, web-based dashboard which provides data visualization regarding better policy making and risk management.

IoT Based Real-Time Indoor Air Quality Monitoring Platform for a Ventilation System (청정환기장치 최적제어를 위한 IoT 기반 실시간 공기질 모니터링 플랫폼 구현)

  • Uprety, Sudan Prasad;Kim, Yoosin
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.95-104
    • /
    • 2020
  • In this paper, we propose the real time indoor air quality monitoring and controlling platform on cloud using IoT sensor data such as PM10, PM2.5, CO2, VOCs, temperature, and humidity which has direct or indirect impact to indoor air quality. The system is connected to air ventilator to manage and optimize the indoor air quality. The proposed system has three main parts; First, IoT data collection service to measure, and collect indoor air quality in real time from IoT sensor network, Second, Big data processing pipeline to process and store the collected data on cloud platform and Finally, Big data analysis and visualization service to give real time insight of indoor air quality on mobile and web application. For the implication of the proposed system, IoT sensor kits are installed on three different public day care center where the indoor pollution can cause serious impact to the health and education of growing kids. Analyzed results are visualized on mobile and web application. The impact of ventilation system to indoor air quality is tested statistically and the result shows the proper optimization of indoor air quality.

Detecting Common Weakness Enumeration(CWE) Based on the Transfer Learning of CodeBERT Model (CodeBERT 모델의 전이 학습 기반 코드 공통 취약점 탐색)

  • Chansol Park;So Young Moon;R. Young Chul Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.10
    • /
    • pp.431-436
    • /
    • 2023
  • Recently the incorporation of artificial intelligence approaches in the field of software engineering has been one of the big topics. In the world, there are actively studying in two directions: 1) software engineering for artificial intelligence and 2) artificial intelligence for software engineering. We attempt to apply artificial intelligence to software engineering to identify and refactor bad code module areas. To learn the patterns of bad code elements well, we must have many datasets with bad code elements labeled correctly for artificial intelligence in this task. The current problems have insufficient datasets for learning and can not guarantee the accuracy of the datasets that we collected. To solve this problem, when collecting code data, bad code data is collected only for code module areas with high-complexity, not the entire code. We propose a method for exploring common weakness enumeration by learning the collected dataset based on transfer learning of the CodeBERT model. The CodeBERT model learns the corresponding dataset more about common weakness patterns in code. With this approach, we expect to identify common weakness patterns more accurately better than one in traditional software engineering.

Exploring Other Effective Conservation Measures (OECMs) for Natural Heritage Sites - Focusing on the Dansanmok and Dansanje in Establishing the National Biodiversity Strategy and Action Plan - (국가 생물다양성 전략 수립을 위한 OECMs의 가능성 탐구 - 당산목과 당산제를 중심으로 -)

  • Lee, Da-Young
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.3
    • /
    • pp.27-46
    • /
    • 2023
  • This study examines the possibility of applying Other Effective Area-based Conservation Measures (OECMs) to natural heritage sites that are not designated as protected areas for the National Biodiversity Strategy and Action Plan (NBSAP). Firstly, the study investigated the ecological and cultural characteristics associated with a natural heritage site, specifically the natural monument known as Dangsanmok, and synthesized the collected information to assess its conservation value. Subsequently, the study examined the possibility of designating Dangsanmok as an OECM that reflects local communities through the criteria of the IUCN's individual assessment tools. The research findings indicate that Dangsanmok and the associated Dangsanje system are positively evaluated as potential OECMs. Additionally, initiatives such as the "Dangsan Tree Grandfather Program" and the "National Heritage Folk Event Grant Program," implemented by the Cultural Heritage Administration, are seen to have a positive impact on engaging local communities voluntarily. Consequently, based on these results, it is expected that natural heritage sites like Dangsanmok, serving as national indicators, will contribute to the 2030 goals for biodiversity conservation and the 2050 goals for harmonious coexistence with nature as part of NBSAPs.

LASPI: Hardware friendly LArge-scale stereo matching using Support Point Interpolation (LASPI: 지원점 보간법을 이용한 H/W 구현에 용이한 스테레오 매칭 방법)

  • Park, Sanghyun;Ghimire, Deepak;Kim, Jung-guk;Han, Youngki
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.932-945
    • /
    • 2017
  • In this paper, a new hardware and software architecture for a stereo vision processing system including rectification, disparity estimation, and visualization was developed. The developed method, named LArge scale stereo matching method using Support Point Interpolation (LASPI), shows excellence in real-time processing for obtaining dense disparity maps from high quality image regions that contain high density support points. In the real-time processing of high definition (HD) images, LASPI does not degrade the quality level of disparity maps compared to existing stereo-matching methods such as Efficient LArge-scale Stereo matching (ELAS). LASPI has been designed to meet a high frame-rate, accurate distance resolution performance, and a low resource usage even in a limited resource environment. These characteristics enable LASPI to be deployed to safety-critical applications such as an obstacle recognition system and distance detection system for autonomous vehicles. A Field Programmable Gate Array (FPGA) for the LASPI algorithm has been implemented in order to support parallel processing and 4-stage pipelining. From various experiments, it was verified that the developed FPGA system (Xilinx Virtex-7 FPGA, 148.5MHz Clock) is capable of processing 30 HD ($1280{\times}720pixels$) frames per second in real-time while it generates disparity maps that are applicable to real vehicles.

Automatic Method for Extracting Homogeneity Threshold and Segmenting Homogeneous Regions in Image (영상의 동질성 문턱 값 추출과 영역 분할 자동화 방법)

  • Han, Gi-Tae
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.363-374
    • /
    • 2010
  • In this paper, we propose the method for extracting Homogeneity Threshold($H_T$) and for segmenting homogeneous regions by USRG(Unseeded Region Growing) with $H_T$. The $H_T$ is a criterion to distinguish homogeneity in neighbor pixels and is computed automatically from the original image by proposed method. Theoretical background for proposed method is based on the Otsu's single level threshold method. The method is used to divide a small local part of original image int o two classes and the sum($\sigma_c$) of standard deviations for the classes to satisfy special conditions for distinguishing as different regions from each other is used to compute $H_T$. To find validity for proposed method, we compare the original image with the image that is regenerated with only the segmented homogeneous regions and show up the fact that the difference between two images is not exist visually and also present the steps to regenerate the image in order the size of segmented homogeneous regions and in order the intensity that includes pixels. Also, we show up the validity of proposed method with various results that is segmented using the homogeneity thresholds($H^*_T$) that is added a coefficient ${\alpha}$ for adjusting scope of $H_T$. We expect that the proposed method can be applied in various fields such as visualization and animation of natural image, anatomy and biology and so on.

Diagnosis Model for Closed Organizations based on Social Network Analysis (소셜 네트워크 분석 기반 통제 조직 진단 모델)

  • Park, Dongwook;Lee, Sanghoon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.6
    • /
    • pp.393-402
    • /
    • 2015
  • Human resources are one of the most essential elements of an organization. In particular, the more closed a group is, the higher the value each member has. Previous studies have focused on personal attributes of individual, such as medical history, and have depended upon self-diagnosis to manage structures. However, this method has weak points, such as the timeconsuming process required, the potential for concealment, and non-disclosure of participants' mental states, as this method depends on self-diagnosis through extensive questionnaires or interviews, which is solved in an interactive way. It also suffers from another problem in that relations among people are difficult to express. In this paper, we propose a multi-faced diagnosis model based on social network analysis which overcomes former weaknesses. Our approach has the following steps : First, we reveal the states of those in a social network through 9 questions. Next, we diagnose the social network to find out specific individuals such as victims or leaders using the proposed algorithm. Experimental results demonstrated our model achieved 0.62 precision rate and identified specific people who are not revealed by the existing methods.

Social Big Data-based Co-occurrence Analysis of the Main Person's Characteristics and the Issues in the 2016 Rio Olympics Men's Soccer Games (소셜 빅데이터 기반 2016리우올림픽 축구 관련 이슈 및 인물에 대한 연관단어 분석)

  • Park, SungGeon;Lee, Soowon;Hwang, YoungChan
    • 한국체육학회지인문사회과학편
    • /
    • v.56 no.2
    • /
    • pp.303-320
    • /
    • 2017
  • This paper seeks to better understand the focal issues and persons related to Rio Olympic soccer games through social data science and analytics. This study collected its data from online news articles and comments specific to KOR during the Olympic football games. In order to investigate the public interests for each game and target persons, this study performed the co-occurrence words analysis. Then after, the study applied the NodeXL software to perform its visualization of the results. Through this application and process, the study found several major issues during the Rio Olympic men's football game including the following: the match between KOR and PIJ, KOR player Heungmin Son, commentator Young-Pyo Lee, sportscaster Woo-Jong Jo. The study also showed the general public opinion expressed positive words towards the South Korean national football team during the Rio Olympics, though there existed negative words as well. Furthermore the study revealed positive attitude towards the commentators and casters. In conclusion, the way to increase the public's interest in big sporting events can be achieved by providing the following: contents that include various professional sports analysis, a capable domain expert with thorough preparation, a commentator and/or caster with artistic sense as well as well-spoken, explanatory power and so on. Multidisciplinary research combined with sports science, social science, information technology and media can contribute to a wide range of theoretical studies and practical developments within the sports industry.