• 제목/요약/키워드: Visualization engine

검색결과 285건 처리시간 0.023초

웹 검색 결과 시각화 기법의 사용성 평가에 관한 연구 (A Usability Evaluation on the Visualization Techniques of Web Retrieval Results)

  • 김성희;김문정
    • 한국문헌정보학회지
    • /
    • 제41권3호
    • /
    • pp.181-199
    • /
    • 2007
  • 본 연구는 웹 정보로부터 이용자가 원하는 정보를 효율적으로 검색, 도출하기 위한 방안으로 시각화된 기법을 제시하였다. 이용자를 기반으로 한 시각화 기법의 사용성을 평가하기 위해 먼저, 시각화에 대한 개념 및 사용성 평가 요소를 분석한 후 현재 상용화 되고 있는 웹 검색 시각화 시스템인 searchCrystal과 KartOO를 선정해서 사용성을 평가하였다. 그 결과 시각화의특징을 살려서 디자인 된 시스템은 이용자로 하여금 더 친숙하고 효율적인 인터페이스 환경을 제공하는 것으로 나타났다.

전자제어식 직접분사 디젤 엔진 연소실내의 분무연소 특성에 관한 연구 (A study on the spray combustion characteristics in a cylinder of a D.I.diesel engine with the electronically controlled injector)

  • 정재우;김성중;이기형;선우명호
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.50-56
    • /
    • 2000
  • It is well known that the combustion phenomenon of diesel engine is an unsteady turbulent diffusion combustion. Therefore, the combustion performance of diesel engine is related to a complex phenomenon which involves the various factors of combustion, such as a injection pressure, injection timing, injection rate, and operation conditions of engine. In this study, the spray and the flame development processes in a single cylinder D.I. diesel visualization engine which uses the electronically controlled injection system were visualized to interpret the complicated combustion phenomenon by using high speed CCD camera. In addition, the cylinder pressure and heat release rate were also obtained in order to analyze the diesel combustion characteristics under several engine conditions.

  • PDF

초희박 GDI엔진에서 다단점화에 의한 연소 및 배기 특성 (The Effect of Multi-ignition Strategy on the Combustion and Emission Characteristics in a Ultra Lean Burn GDI Engine)

  • 박철웅;김성대;김홍석;오희창;배충식
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.106-112
    • /
    • 2012
  • Since air pollution problem by emissions from automotive vehicles has become social issues, lean-burn gasoline direct injection (GDI) engine is focused as an alternative to meet the requirement of reinforced emission regulation and improved fuel consumption. Spray-guided type DI combustion is promising technology, which characterized by the centrally mounted injector and closely positioned spark plug, since stable lean combustion can be realized even at ultra-lean mixture condition. In the present study, the effect of multi-ignition with developed charge coil on combustion and emission characteristics was investigated in optical accessible single cylinder engine. In order to fully understand the in-cylinder phenomena and the mechanisms of emission production, optical diagnostics, such as flame visualization was also carried out at frequently using operating condition. Multi-ignition is effective to improve fuel economy but increase NOx emission at flammability limit.

엔진 경사 조건이 오일 공급 시스템에 미치는 영향 (The Effect of Engine Tilting Conditions on the Oil Supply System)

  • 전문수;김숭기;박병완
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.37-43
    • /
    • 2004
  • Engine lubrication system is generally affected by vehicle driving conditions; acceleration, braking deceleration, and cornering. The oil supply system such as oil pan, baffle plate, and oil pick-up pipe should be optimized to cope with severe driving conditions. The main purpose of this paper is to understand the effect of the engine tilting angle on the oil supply system using engine tilting test rig. For the purpose, the oil pressure fluctuation and oil aeration in the main gallery are measured at various engine tilting angles. In addition, the oil flow is visualized by using transparent oil pan to investigate the cause of the formation of oil aeration. The test results show there is a strong correlation between the main gallery oil pressure fluctuation and oil aeration. It is also found that the visualization technique is helpful to stabilize the oil supply system at severe driving conditions.

가솔린 직접 분사식 인젝터의 미립화 특성에 관한 연구 (A Study on the Atomization Characteristic of a Gasoline Direct Injector)

  • 김봉규;이기형;이창식;홍진성
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.65-71
    • /
    • 1999
  • Recently new engine system is being required to cope with intensive emission restriction . For this reason, GDI(Gasoline direct injection) engine system which can satisfy both as good fuel economy as diesel engine and the performance to surpass PFI gasoline engine is being development . Since fuel injection system plays a significant role in GDI engine performance, the investigation of the spray characteristics injected from GDI injector above all is indispensable for GDI system development. In this study , spray developing shape was visualized using laser sheet with Nd : YAG laser and atomization characteristics was analyzed by measuring velocities and droplet size with PDA. Utilizing these results , the basic design factor of GDI injector can be offered.

  • PDF

커먼레일 디젤엔진의 DME와 디젤연료의 분무 및 연소 특성 (Spray and Combustion Characteristics of DME and Diesel Fuel in a Common-Rail Diesel Engine)

  • 김명윤;하성용;이창식
    • 한국분무공학회지
    • /
    • 제12권1호
    • /
    • pp.30-37
    • /
    • 2007
  • Dimethyl ether (DME) as an alternative fuel for compression ignition engine was investigated by measuring spray development processes, injection rate profiles, engine performance, and exhaust emission characteristics. The results of DME fueled engine were compared with those obtained by fueled with diesel. The experimental results showed that DME has approximately 0.03ms shorter injection delay and higher maximum injection rate than those of diesel fuel at a constant injection pressure of 50MPa. The spray visualization indicates that DME has shorter spray tip penetration due to its low density and faster evaporation. The combustion characteristics of DME operated engine provided faster ignition delay and three times shorter combustion duration. It is believed that the better evaporation and atomization characteristic of DME contributes the faster combustion. At all operating condition, soot emission was not detected due to the clean combustion of DME.

  • PDF

액상 LPG 직접 분사식 기관 개발을 위한 인젝터 내 기포발생현상의 원인 규명에 관한 기초연구 (A Fundamental Study on the Investigation of Bubbling Phenomenon in the Injector for the Development the LPDi Engine)

  • 노기철;이종태
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.1-8
    • /
    • 2006
  • One of the most important subjects to develop a LPDi engine is to suppress the bubble generated inside the liquid LPG direct injector. For the purpose of this, the analogy visualization injector to visualize the generation and behaviors of bubble is manufactured, and the bubbling phenomenon and behaviors of bubble are visualized and investigated according to the change of the temperature around an injector wall, fuel pressure and a needle configuration. As results, it was found that the bubble inside the injector is generated around an injector hole and after rising by buoyancy it disappears around the top of a nozzle. The number of bubbles generated is little changed regardless of the lapse of time but it remarkably increases as the temperature around the injector increases. Also, it was known that as the sac volume in LPDi injector decreases the generation of bubble is more active and the rising velocity of bubble generated is increased.

직접분사식 LPG의 분무 및 연소 특성에 관한 연구 (A Study on the Spray and Combustion Characteristics of Direct-injection LPG)

  • 황성일;정성식;염정국
    • 동력기계공학회지
    • /
    • 제19권2호
    • /
    • pp.40-48
    • /
    • 2015
  • As advantages of LPG-DI engine, LPG is directly injected into combustion chamber during compression stroke to reduce compression temperature, prevent knock and spontaneous combustion, and adjust engine output using the amount of directly injected fuel, thereby reducing pumping loss caused by throttle valve. Stratified charge can be supplied nearby spark plugs to allow for overall lean combustion, which improves thermal efficiency and can cope with problems regarding emission regulations. In addition, it is characterized by free designing of intake manifold. Despite the fact that LPG-DI has many advantages as described above, there is lack of detailed investigation and study on spray characteristics, combustion flame characteristics, and ignition probability. In this study, a visualization experiment system that consists of visualization combustion chamber, air supply control system, emission control system, LPG fuel supply system, electronic control system and image data acquisition system was designed and manufactured. For supply of stratified charge in the combustion chamber, alignment of injector and spark plugs was made linear.

분위기 조건 변화에 따른 저압 직접분사식 LPG의 점화성 및 연소특성 연구 (A Study on Ignition Probability and Combustion Characteristics of Low Pressure Direct Injection LPG according to a Function of Ambient Condition)

  • 정성식;황성일;염정국;전병열
    • 동력기계공학회지
    • /
    • 제20권2호
    • /
    • pp.32-42
    • /
    • 2016
  • Under part load condition of spark-ignition engine, pumping loss had great effect on engine efficiency. To reduce pumping loss, the study designed spark-ignited engines to make direct spray of gasoline to combustion chamber. In spark-ignited direct-injection engines, ignition probability is important for successful combustion and flame propagation characteristics are also different from pre-mixed combustion. This study designed a visualization testing device to study ignition probability of spark-ignited direct-injection LPG fuel and combustion flame characteristics. This visualization device consists of combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. Ambient pressure, ambient temperature and ambient air flow velocity are important parameters on ignition probability of LPG-air mixture and flame propagation characteristics, and the study also found that sprayed LPG fuel can be directly ignited by spark-plug under proper ambient conditions. To all successful cases of ignition, the study recorded flame propagation image in digital method through ICCD camera and its flame propagation characteristics were analyzed.

이중모드 위상도플러 속도계측기법에 의한 소형 액체로켓엔진 인젝터 분무의 가시화 (A Visualization of the Spray from Small Liquid-rocket Engine Injector by Dual-mode Phase Doppler Anemometry)

  • 정훈;김정수;배대석;권오붕
    • 한국가시화정보학회지
    • /
    • 제8권4호
    • /
    • pp.60-65
    • /
    • 2010
  • A focus is given to the breakup behavior of spray droplets issuing from a nonimpinging-type injector. The analysis has been carried out experimentally by means of the dual-mode phase Doppler anemometry (DPDA). Spray characteristic parameters in terms of axial velocity, mean diameter, velocity fluctuation, and span (width of the size distribution) of droplets are measured down the geometric axis of a nozzle orifice and on the plane normal to the spray stream with the injection pressure variations. As the injection pressure increases, the velocity and its fluctuation become higher, whereas the droplet sizes get smaller. It is also shown that the magnitudes of those parameters are smoothed out by dispersion when the droplets move downstream as well as outwardly. The atomization process is significantly influenced by the injection pressure rather than the traveling distance in the experimental condition presented.