• Title/Summary/Keyword: Visualization Method

Search Result 1,677, Processing Time 0.173 seconds

Flow Visualization of Pulsatile Flow in a Branching Tube using the PIV System and Numerical Analysis (PIV와 수치해석을 이용한 분지관내 맥동유동의 가시화)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.535-540
    • /
    • 2000
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCD camera for the image processing. The cross-correlation method in combination with the moving searching area algorithm was applied for the image processing of the flow visualization. The pulsatile flow fields were visualized effectively by the PIV system in conjunction with the applied algorithm. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

Flow Visualization Study on the Turbulent Mixing of Two Fluid Streams (III) (분지관 혼합기의 난류혼합에 대한 유동가시화 연구(III))

  • Kim, Kyung Chun;Shin, Dae Sig;Park, Kee Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1571-1581
    • /
    • 1998
  • A flow visualization study was carried out for the branch pipe mixing flow in which a jet was issued normally to the fully developed pipe flow. An instantaneous laser tomographic method was used for cross flow Reynolds numbers based on the cross flow diameter D ranged $Re_{cf}=5.26{\times}10^3{\sim}1.13{\times}10^4$, diameter ratios d/D = 0.1 ~ 0.2 and velocity ratios R = 0.5 ~ 10. Oil mist with the size of about $10{\mu}m$ diameter was used for the scattering particle. The main purpose of this study was to reveal the physical mechanism and the structure of vortices formation with varying the velocity ratios and diameter ratios in the branch pipe flow. It was found that the physical mechanism and the structures of vortices formation were quite different depending on the velocity ratios. Particularly in the case of R < 1, the typical vortex shows single loop shape and that for the case of R > 1 depicts mushroom-like structure in the cross flow jet.

A Study on Ignition Probability and Combustion Characteristics of Low Pressure Direct Injection LPG according to a Function of Ambient Condition (분위기 조건 변화에 따른 저압 직접분사식 LPG의 점화성 및 연소특성 연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Yeom, Jeong-Kuk;Jeon, Byong-Yeul
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.32-42
    • /
    • 2016
  • Under part load condition of spark-ignition engine, pumping loss had great effect on engine efficiency. To reduce pumping loss, the study designed spark-ignited engines to make direct spray of gasoline to combustion chamber. In spark-ignited direct-injection engines, ignition probability is important for successful combustion and flame propagation characteristics are also different from pre-mixed combustion. This study designed a visualization testing device to study ignition probability of spark-ignited direct-injection LPG fuel and combustion flame characteristics. This visualization device consists of combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. Ambient pressure, ambient temperature and ambient air flow velocity are important parameters on ignition probability of LPG-air mixture and flame propagation characteristics, and the study also found that sprayed LPG fuel can be directly ignited by spark-plug under proper ambient conditions. To all successful cases of ignition, the study recorded flame propagation image in digital method through ICCD camera and its flame propagation characteristics were analyzed.

Numerical Visualization of the Unsteady Shock Wave Flow Field in Micro Shock Tube

  • Arun, Kumar R.;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2012
  • Recently micro shock tube is extensively being used in many diverse fields of engineering applications but the detailed flow physics involved in it is hardly known due to high Knudsen number and strong compressibility effects. Unlike the macro shock tube, the surface area to volume ratio for a micro shock tube is very large. This unique effect brings many complexities into the flow physics that makes the micro shock tube different compared with the macro shock tube. In micro shock tube, the inter- molecular forces of working gas can play an important role in specifying the flow characteristics of the unsteady shock wave flow which is essentially generated in all kinds of shock tubes. In the present study, a CFD method was used to predict and visualize the unsteady shock wave flows using the unsteady compressible Navier-Stokes equations, furnished with the no-slip and slip wall boundary conditions. Maxwell's slip equations were used to mathematically model the shock movement at high Knudsen number. The present CFD results show that the propagation speed of the shock wave is directly proportional to the initial pressure and diameter of micro shock tube.

Flow Characteristics around Archimedes Wind Turbine according to the Change of Angle of Attack (받음각 변화에 따른 아르키메데스 풍력발전 날개 주위의 유동장 변화)

  • Li, Qiang;Kim, Hyun Dong;Ji, Ho Seong;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • This paper describes aerodynamic characteristics of an Archimedes spiral wind turbine with various angles of attack. The range of angles was controlled from $-30^{\circ}$ (clockwise) to $+30^{\circ}$ (clockwise). The rotating speed of wind turbine at the same angle of attack in both directions was different. The reason why the-maximum rotational speed was observed at $15^{\circ}$ in clockwise direction can be explained based on angular momentum conservation. Quantitative flow visualization around Archimedes wind turbine blade was carried out between $-15^{\circ}$ (clockwise) and $+15^{\circ}$ (counter clockwise) using high resolution PIV method. The relationship between drag force and rotating speeds was discussed. From these results, optimum design on yawing system of Archimedes spiral wind turbine may provide high efficiency on small wind power system.

Experimental Study on Heat Transfer with Swirling Flow in a Cylindrical Annuli (원형동심관내 선회유동의 열전달에 대한 실험적 연구)

  • Chang, Tae-Hyun;Kil, Sang-Cheol;Lee, Kwon-Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • Experimental investigations were conducted to study the characteristics of turbulent swirling flow in an axisymmetric annuli. Swirl angle measurements were performed using a flow visualization technique using smoke and dye liquid for Re=60,00080,000. Using the two-dimensional particle image velocimetry method, we found the time-mean velocity distribution and turbulent intensities in water with swirl for Re=20,000, 30,000, and 40,000 along longitudinal sections. Neutral points occurred for equal axial velocity at y/(R-r)=0.70.75, and the highest axial velocity was recorded near y/(R-r)=0.9. Negative axial velocity was observed near the convex tube along X/(D-d)=3~23. Another experimental study was performed to investigate heat transfer characteristics of turbulent swirling flow in an axisymmetric annuli. Static pressure, and local flow temperature were measured using tangential inlet condition and the friction factors and Nusselt number were calculated for several Reynolds numbers.

A Study on Combustion Characteristics of Methane Fuel according to Torch Nozzle Diameter in a Constant Volume Combustion Chamber (정적연소기에서 토치의 노즐 직경에 따른 메탄의 연소특성 파악)

  • Lee, Jung-Man;Kwon, Soon-Tae;Park, Chan-Jun;Ohm, In-Young
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • Five different size of orifice were applied in a constant volume combustion chamber for evaluating the effects of torch-ignition on combustion. The initial flame development and flame propagation were analyzed by the mass burned fraction and combustion enhancement rate. The combustion pressures were measured to calculate the mass burned fractions and the combustion enhancement rates. In addition, the flame propagations were visualized by the shadowgraph method for the qualitative comparison. The result showed that the combustion pressure and mass burned fraction were increased when using the torch-ignition device. The combustion enhancement rates of torch-ignition cases were improved in comparison with conventional spark ignition. Finally, the visualization results showed that the torch-ignition induced faster burn than conventional spark ignition due to the earlier transition to turbulent flame and larger flame surface, during the initial stage.

Real-Time Visualization Techniques for Sensor Array Patterns Using PCA and Sammon Mapping Analysis (PCA와 Sammon Mapping 분석을 통한 센서 어레이 패턴들의 실시간 가시화 방법)

  • Byun, Hyung-Gi;Choi, Jang-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.99-104
    • /
    • 2014
  • Sensor arrays based on chemical sensors produce multidimensional patterns of data that may be used discriminate between different chemicals. For the human observer, visualization of multidimensional data is difficult, since the eye and brain process visual information in two or three dimensions. To devise a simple means of data inspection from the response of sensor arrays, PCA (Principal Component Analysis) or Sammon's nonlinear mapping technique can be applied. The PCA, which is a well-known statistical method and widely used in data analysis, has disadvantages including data distortion and the axes for plotting the dimensionally reduced data have no physical meaning in terms of how different one cluster is from another. In this paper, we have investigated two techniques and proposed a combination technique of PCA and nonlinear Sammom mapping for visualization of multidimensional patterns to two dimensions using data sets from odor sensing system. We conclude the combination technique has shown more advantages comparing with the PCA and Sammon nonlinear technique individually.

Machine Learning based Prediction of The Value of Buildings

  • Lee, Woosik;Kim, Namgi;Choi, Yoon-Ho;Kim, Yong Soo;Lee, Byoung-Dai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3966-3991
    • /
    • 2018
  • Due to the lack of visualization services and organic combinations between public and private buildings data, the usability of the basic map has remained low. To address this issue, this paper reports on a solution that organically combines public and private data while providing visualization services to general users. For this purpose, factors that can affect building prices first were examined in order to define the related data attributes. To extract the relevant data attributes, this paper presents a method of acquiring public information data and real estate-related information, as provided by private real estate portal sites. The paper also proposes a pretreatment process required for intelligent machine learning. This report goes on to suggest an intelligent machine learning algorithm that predicts buildings' value pricing and future value by using big data regarding buildings' spatial information, as acquired from a database containing building value attributes. The algorithm's availability was tested by establishing a prototype targeting pilot areas, including Suwon, Anyang, and Gunpo in South Korea. Finally, a prototype visualization solution was developed in order to allow general users to effectively use buildings' value ranking and value pricing, as predicted by intelligent machine learning.

Representing variables in the latent space (분석변수들의 잠재공간 표현)

  • Huh, Myung-Hoe
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.4
    • /
    • pp.555-566
    • /
    • 2017
  • For multivariate datasets with large number of variables, classical dimensional reduction methods such as principal component analysis may not be effective for data visualization. The underlying reason is that the dimensionality of the space of variables is often larger than two or three, while the visualization to the human eye is most effective with two or three dimensions. This paper proposes a working procedure which first partitions the variables into several "latent" clusters, explores individual data subsets, and finally integrates findings. We use R pakacage "ClustOfVar" for partitioning variables around latent dimensions and the principal component biplot method to visualize within-cluster patterns. Additionally, we use the technique for embedding supplementary variables to figure out the relationships between within-cluster variables and outside variables.