• 제목/요약/키워드: Visualization Experiment

검색결과 397건 처리시간 0.026초

무대 공연에서 현악기 소리에 반응하는 실시간 영상에 관한 연구 (Research of real-time image which is responding to the strings sound in art performance)

  • 장은선;홍성대;박진완
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.185-190
    • /
    • 2009
  • 최근 문화공연은 전통적인 공연예술의 틀을 벗어나 여러 장르를 도입하여 새로운 문화콘텐츠를 만들고 있으며, 특히 무대를 갖는 공연에는 영상예술과 첨단기술을 이용한 이색적인 공연이 나타나고 있다. 그 중에서도 무대 공연은 소리를 이용한 퍼포먼스가 행해지는 공연 같은 경우, 소리를 재해석하여 영상과 결합시킨 실험적인 공연이 나타나고 있다. 하지만 아직 대중 공연예술에서는 실시간 소리에 따라 영상을 시각화하는 과정이 자동화 되지 않고 있다. 이 경우 연주자와 관객이 즉흥적으로 내는 소리를 실시간으로 보여줄 수 없기 때문에 영상과 관객, 그리고 공연자의 상호교류가 이루어질 수 없다. 본 논문에서는 공연영상을 위한 실시간 사운드 시각화(Real-time sound visualization)를 실험함으로써 즉흥적인 공연 환경과 소통하는 영상 시각화를 제안한다. 영상 시각화는 공연예술에서 사용되는 악기 중 현악기를 중심으로 한다. 미디 환경을 기반으로 하는 맥스엠에스피/지터(MaxMSP/Jitter)를 이용하여 사운드 신호에 따른 영상 제어 시스템을 구축하고 코르그 나노 컨트롤(Korg Nano Kontrol) 기기를 활용하여 영상을 실험 및 제어한다. 이를 통해 공연 환경에 따라 미묘하게 달라지는 공연자의 감정과 박자감 그리고, 공연자의 행태에 따라 즉흥적으로 변화하는 실시간 인터랙티브 영상을 확인할 수 있다.

  • PDF

소듐냉각고속로 KALIMER-600 축소 물모의 열유동 가시화 실험장치 구축 및 거시 유동장 특성 측정 (Water-Simulant Facility Installation for the Sodium-Cooled Fast Reactor KALIMER-600 and Global Flow Measurement)

  • 차재은;김성오
    • 한국가시화정보학회지
    • /
    • 제9권4호
    • /
    • pp.54-62
    • /
    • 2011
  • KAERI has developed a KALIMER-600 which is a pool-type sodium-cooled fast reactor with a 600MWe electric generation capacity. For a SFR development, one of the main topics is an enhancement of the reactor system safety. Therefore, we have a long-term plan to design the large sodium experimental facility to evaluate the reactor safety and component performance. In order to extrapolate a thermal hydraulic phenomena in a large sodium reactor, the thermal hydraulics phenomena is under investigation in a 1/$10^{th}$ water-simulant facility for the KALIMER-600. In this paper, we shortly described the experimental facility setup and the measurement of the isothermal global flow behavior. For the flow field measurement, the PIV method was used in a transparent Plexiglas reactor vessel model at around $20^{\circ}C$ water condition.

분사조건에 따른 LPG 인젝터의 분무특성에 관한 연구 (A Study on the spray characteristics according to injection conditions for LPG injector)

  • 류재덕;윤용원;이기형;이창식
    • 한국분무공학회지
    • /
    • 제6권3호
    • /
    • pp.17-22
    • /
    • 2001
  • Recently LPG engine is developed to fulfill such new requirements as improved fuel efficiency in additional to further reduced exhaust emission. This experimental study is conducted to analyze spray characteristics for pintle type injector used in a LPLi (Liquid Phase LPG injection) engine. Since spray parameters including penetration length and spray angle make a role to design injector and engine intake system, spray visualization experiment is performed under atmosphere ambient and charging condition using Mie scattering method. From the experimental result under various LPG formation, the increased propane component decreases penetration length because boiling point of propane is lower than butane. To simulate intake charging condition in MPI engine, spray visualization is performed under high pressure condition. As a result, as ambient pressure is increased from atmosphere to 3.0 bar, penetration length is decreased. However, as ambient pressure is increased from atmosphere to 3.0 bar, spray angle is increased.

  • PDF

입자영상유속계를 이용한 혈관내피세포 모형 주위의 유동가시화 (Flow Visualization around the Endothelial Cell Model by the PIV System)

  • 노형운;서상호;유상신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.381-384
    • /
    • 2000
  • Relationships between biochemical phenomena and hemodynamics on human endothelial cells are very important to study the mechanism of atherosclerotic formation and development. The objective of this study is to investigate the flow phenomena around the endothelial cell model by the PIV experiment. The microscopic images of endothelial cells were acquired by a CCD camera to fabricate the shape of endothelial cell. The cell models were fabricated by using a photoforming process. Two consecutive particle images were captured by the CCD camera for the image processing. Conifer powder as the tracing particles was added to water to visualize the flow field. The cross-correlation method was applied fer the image processing of the flow visualization. Pressure and wall shear stress variations on the surfaces of the endothelial cells were calculated to investigate the effects of hemodynamic forces on the morphological changes.

  • PDF

고온평판에 충돌하는 비균일혼합액적의 동적거동 특성 (Dynamic Behavior of Heterogeneous Impinging Droplets onto High Temperature Plate)

  • 이충현;김경천
    • 한국가시화정보학회지
    • /
    • 제13권3호
    • /
    • pp.20-23
    • /
    • 2015
  • In this experiment, a heterogeneous droplet consisted of de-ionized water and olive oil was made through two 31G injection needles. The injection flow rate was $50{\mu}{\ell}/min$ and the droplet size was 2 mm. The droplet was impinged onto a sapphire plate which was heated up to $300^{\circ}C$ by a heater. Two high speed cameras were used for visualization, and the frame rate was 20,000 fps. A 150W metal halite lamp was used for illumination. The dropping height was fixed to 20 mm and the corresponding Weber number was 10.6 based on water. Due to different boiling points of two liquids, partial boiling features of heterogeneous droplet was observed. At the Leidenfrost condition, micro explosion phenomenon has occurred.

발사체 충돌에 의한 초음속 액체 제트의 분사 특성 및 유동 가시화 (Spray Characterization and Flow Visualization of the Supersonic Liquid Jet by a Projectile Impingement)

  • 신정환;이인철;구자예;김희동
    • 한국가시화정보학회지
    • /
    • 제9권2호
    • /
    • pp.27-33
    • /
    • 2011
  • Supersonic liquid jet discharged from a nozzle has been investigated by using a ballistic range which is composed of high-pressure tube, pump tube, launch tube and liquid storage nozzle. High-speed Schlieren optical method was used to visualize the supersonic liquid jet flow field containing shock wave system, and spray droplet diameter was measured by the laser diffraction method. Experiment was performed with various types of nozzle to investigate the major characteristics of the supersonic liquid jet operating at the range of total pressure of 0.8 from 2.14 GPa. The results obtained shows that shock wave considerably affects the detailed atomization process of the liquid jet and as the nozzle diameter decreases, the shock wave angle and the averaged SMD of spray droplet tends to decrease.

다전극을 이용한 ER유체 유동모드 가시화에 관한 연구 (A study on visualization about the flow mode of ER fluid using the DME)

  • 이육형
    • 한국기계가공학회지
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2010
  • A new flow mode of ER fluid available for controlling the damping force by using DME(Discrete Multi-Electrode) is presented in this study. Various characteristics about the flow of ER fluid through the experiment of ER cluster behavior visualization can be assumed. The pressure in electrode length and voltage division mode is measured. An actuator with a damping effect through DME ER damper will be developed. This damper controls the damping force by using the displacement and velocity of the plant which consists of the various electrode length and voltage modes without a controller in the real system.

Investigation of the shock structural formation of the supersonic nozzle jet with longitudinal variation of coaxial pipe location

  • Roh, Sung-Cheoul;Park, Jun-Young;Kim, Soo-Yong
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.784-788
    • /
    • 2004
  • A visualization study of shock formation of the supersonic jet nozzle using a Shadowgraph Method (SM) was carried out to investigate the effect of the longitudinal variation of coaxial pipe end tip position inside the supersonic nozzle. The experiment was performed for the Mach number range from 1.1 to 1.2 at nozzle exit. The well known shock cell structure was shown with the pipe end located deep inside the nozzle for the studied Mach number. With the pipe end approaches nozzle exit, it was found that the shock cell structure disappeared and turned into complex formation. In order to understand the mechanism of the shock structural change, computational simulation was carried out using the Navier-Stokes solver, FLUENT. Topological sketch was added with an aid of the visualization and the numerical simulation.

  • PDF

Visualization of Flow inside a Regenerative Turbomachinery

  • Yang, Hyeonmo;Lee, Kyoung-Yong;Choi, Youngseok;Jeong, Kyungseok
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권2호
    • /
    • pp.80-85
    • /
    • 2014
  • In this study, we visualized the internal flow of a regenerative turbomachinery using the direct injection tracer method. For visualization, the working fluid was water and the tracer was oil colors (marbling colors). Droplets were injected at the inlet of the machinery and the streak were recorded using a high-speed camera with high-power light sources. While circulating inside the groove, the droplets were translated by the rotational motion of the impeller. When the droplets flow out of the impeller groove, relative to the impeller, they moved more slowly. And the droplets repeatedly reentered into the groove and circulated again. Then the droplets either flowed to the outlet or to the stripper. As a result, this experiment has confirmed the internal circulating flow of a regenerative turbomachinery.

가솔린 분무 거동에 미치는 분위기 조건의 영향 (Effect of Ambient Conditions on Spray Behavior of Gasoline Injector)

  • 이창식;이기형;최수천;권상일
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.27-32
    • /
    • 2000
  • The main objective of this work is to investigate the effect of ambient conditions on the spray behavior and spray characteristics of high-pressure fuel injector. For this purpose, the effects of ambient pressure and temperature on the spray characteristics have been studied by applying the analysis of visualization system and phase Doppler particle analyzer. In this experiment, the visualization of spray behavior was performed under various ambient gas conditions and injection parameters such as gas temperature, ambient pressure, injection pressure of injector, and axial distance from the nozzle tip. Based on the investigation results, the spray tip penetration and spray width decrease with the increase of ambient gas pressure in the spray chamber. The effects of the spray parameters on the microscopic characteristics of gasoline spray were discussed.

  • PDF