• 제목/요약/키워드: Visual sensor

검색결과 451건 처리시간 0.022초

Simultaneous Localization and Mobile Robot Navigation using a Sensor Network

  • Jin Tae-Seok;Bashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권2호
    • /
    • pp.161-166
    • /
    • 2006
  • Localization of mobile agent within a sensing network is a fundamental requirement for many applications, using networked navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, This paper describes a networked sensor-based navigation method in an indoor environment for an autonomous mobile robot which can navigate and avoid obstacle. In this method, the self-localization of the robot is done with a model-based vision system using networked sensors, and nonstop navigation is realized by a Kalman filter-based STSF(Space and Time Sensor Fusion) method. Stationary obstacles and moving obstacles are avoided with networked sensor data such as CCD camera and sonar ring. We will report on experiments in a hallway using the Pioneer-DX robot. In addition to that, the localization has inevitable uncertainties in the features and in the robot position estimation. Kalman filter scheme is used for the estimation of the mobile robot localization. And Extensive experiments with a robot and a sensor network confirm the validity of the approach.

3차원 물체의 인식 성능 향상을 위한 감각 융합 신경망 시스템 (Neural Network Approach to Sensor Fusion System for Improving the Recognition Performance of 3D Objects)

  • 동성수;이종호;김지경
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권3호
    • /
    • pp.156-165
    • /
    • 2005
  • Human being recognizes the physical world by integrating a great variety of sensory inputs, the information acquired by their own action, and their knowledge of the world using hierarchically parallel-distributed mechanism. In this paper, authors propose the sensor fusion system that can recognize multiple 3D objects from 2D projection images and tactile informations. The proposed system focuses on improving recognition performance of 3D objects. Unlike the conventional object recognition system that uses image sensor alone, the proposed method uses tactual sensors in addition to visual sensor. Neural network is used to fuse the two sensory signals. Tactual signals are obtained from the reaction force of the pressure sensors at the fingertips when unknown objects are grasped by four-fingered robot hand. The experiment evaluates the recognition rate and the number of learning iterations of various objects. The merits of the proposed systems are not only the high performance of the learning ability but also the reliability of the system with tactual information for recognizing various objects even though the visual sensory signals get defects. The experimental results show that the proposed system can improve recognition rate and reduce teeming time. These results verify the effectiveness of the proposed sensor fusion system as recognition scheme for 3D objects.

BMVT-M을 이용한 IR 및 SAR 융합기반 지상표적 탐지 (IR and SAR Sensor Fusion based Target Detection using BMVT-M)

  • 임윤지;김태훈;김성호;송우진;김경태;김소현
    • 제어로봇시스템학회논문지
    • /
    • 제21권11호
    • /
    • pp.1017-1026
    • /
    • 2015
  • Infrared (IR) target detection is one of the key technologies in Automatic Target Detection/Recognition (ATD/R) for military applications. However, IR sensors have limitations due to the weather sensitivity and atmospheric effects. In recent years, sensor information fusion study is an active research topic to overcome these limitations. SAR sensor is adopted to sensor fusion, because SAR is robust to various weather conditions. In this paper, a Boolean Map Visual Theory-Morphology (BMVT-M) method is proposed to detect targets in SAR and IR images. Moreover, we suggest the IR and SAR image registration and decision level fusion algorithm. The experimental results using OKTAL-SE synthetic images validate the feasibility of sensor fusion-based target detection.

신경망 학습에 의한 영상처리 네비게이션 (Visual Navigation by Neural Network Learning)

  • Shin, Suk-Young;Hoon Kang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.263-266
    • /
    • 2001
  • It has been integrated into several navigation systems. This paper shows that system recognizes difficult indoor roads and open area without any specific mark such as painted guide line or tape. In this method, Robot navigates with visual sensors, which uses visual information to navigate itself along the road. An Artificial Neural Network System was used to decide where to move. It is designed with USB web camera as visual sensor.

  • PDF

Local and Global Information Exchange for Enhancing Object Detection and Tracking

  • Lee, Jin-Seok;Cho, Shung-Han;Oh, Seong-Jun;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권5호
    • /
    • pp.1400-1420
    • /
    • 2012
  • Object detection and tracking using visual sensors is a critical component of surveillance systems, which presents many challenges. This paper addresses the enhancement of object detection and tracking via the combination of multiple visual sensors. The enhancement method we introduce compensates for missed object detection based on the partial detection of objects by multiple visual sensors. When one detects an object or more visual sensors, the detected object's local positions transformed into a global object position. Local and global information exchange allows a missed local object's position to recover. However, the exchange of the information may degrade the detection and tracking performance by incorrectly recovering the local object position, which propagated by false object detection. Furthermore, local object positions corresponding to an identical object can transformed into nonequivalent global object positions because of detection uncertainty such as shadows or other artifacts. We improved the performance by preventing the propagation of false object detection. In addition, we present an evaluation method for the final global object position. The proposed method analyzed and evaluated using case studies.

Flip Chip Interconnection Method Applied to Small Camera Module

  • Segawa, Masao;Ono, Michiko;Karasawa, Jun;Hirohata, Kenji;Aoki, Makoto;Ohashi, Akihiro;Sasaki, Tomoaki;Kishimoto, Yasukazu
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2000년도 2nd Korea-Japan Advanceed Semiconductor Packaging Technology Seminar
    • /
    • pp.39-45
    • /
    • 2000
  • A small camera module fabricated by including bare chip bonding methods is utilized to realize advanced mobile devices. One of the driving forces is the TOG (Tape On Glass) bonding method which reduces the packaging size of the image sensor clip. The TOG module is a new thinner and smaller image sensor module, using flip chip interconnection method with the ACP (Anisotropic Conductive Paste). The TOG production process was established by determining the optimum bonding conditions for both optical glass bonding and image sensor clip bonding lo the flexible PCB. The bonding conditions, including sufficient bonding margins, were studied. Another bonding method is the flip chip bonding method for DSP (Digital Signal Processor) chip. A new AC\ulcorner was developed to enable the short resin curing time of 10 sec. The bonding mechanism of the resin curing method was evaluated using FEM analysis. By using these flip chip bonding techniques, small camera module was realized.

  • PDF

Human Visual System based Automatic Underwater Image Enhancement in NSCT domain

  • Zhou, Yan;Li, Qingwu;Huo, Guanying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.837-856
    • /
    • 2016
  • Underwater image enhancement has received considerable attention in last decades, due to the nature of poor visibility and low contrast of underwater images. In this paper, we propose a new automatic underwater image enhancement algorithm, which combines nonsubsampled contourlet transform (NSCT) domain enhancement techniques with the mechanism of the human visual system (HVS). We apply the multiscale retinex algorithm based on the HVS into NSCT domain in order to eliminate the non-uniform illumination, and adopt the threshold denoising technique to suppress underwater noise. Our proposed algorithm incorporates the luminance masking and contrast masking characteristics of the HVS into NSCT domain to yield the new HVS-based NSCT. Moreover, we define two nonlinear mapping functions. The first one is used to manipulate the HVS-based NSCT contrast coefficients to enhance the edges. The second one is a gain function which modifies the lowpass subband coefficients to adjust the global dynamic range. As a result, our algorithm can achieve contrast enhancement, image denoising and edge sharpening automatically and simultaneously. Experimental results illustrate that our proposed algorithm has better enhancement performance than state-of-the-art algorithms both in subjective evaluation and quantitative assessment. In addition, our algorithm can automatically achieve underwater image enhancement without any parameter tuning.

시각센서를 이용한 SMT 부품장착상태 검사 (Placement inspection of the SMT components using 3-D vision)

  • 손영탁;오형렬;윤한종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.605-608
    • /
    • 1996
  • The aim of this thesis is to develop a SMT-components placement inspection system equipped with a visual sensor. The visual sensor, which consists of a camera and 2-layer LED illuminator, developed to inspect the component placement state such as missing, shift, flipping, polarity and tomb-stone. on PCB in the reflow-process. In practical applications, however, it is too hard to classify component from images mixed pad on PCB, cream solder paste and component. To overcome the problem, this thesis proposes the 2-layer illumination method and the heuristic image processing algorithms according to inspection type. To show the effectiveness of the proposed approach, a series of experiments on the inspection were conducted. The results show that the proposed method is robust to visual noise and variations in component conditions.

  • PDF

광 센서를 이용한 TV 화상의 색 향상 (Color Enhancement of TV Picture Using Optical Sensor)

  • 이응주;김경만;박양우;정인갑;하영호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1995년도 학술대회
    • /
    • pp.69-74
    • /
    • 1995
  • An object color can be seen differently under the various outer illuminants. However, human visual system has color constancy that the object color can be seen constantly under the different outer illuminants. When the viewer watches TV under specific outer illuminants, he perceives distorted color due to the emitting spectrum of outer illuminants as well as the radiation of CPT itself. Namely, when the outer illuminants such as fluorescent and incandescent lamps incident on CPT, brightness, saturation, hue, and contrast on color pictures are changed, he perceives distorted color from the original color. In this paper color enhancement algorithm based on light intensity and outer light decision function using RGB sensor was proposed. The implemented TV of proposed algorithm has higher visual quality at the view point of human visual system and more vivid than that of conventional color TV.

랜덤한 시간 지연 요소를 갖는 영상 추적 시스템의 제어 (Control of Visual Tracking System with a Random Time Delay)

  • 오남규;최군호
    • 반도체디스플레이기술학회지
    • /
    • 제10권3호
    • /
    • pp.21-28
    • /
    • 2011
  • In recent years, owing to the development of the image processing technology, the research to build control system using a vision sensor is stimulated. However, a random time delay must be considered, because it works of a various time to get a result of an image processing in the system. It can be seen as an obstacle factor to a control of visual tracking in real system. In this paper, implementing two vision controllers each, first one is made up PID controller and the second one is consisted of a Smith Predictor, the possibility was shown to overcome a problem of a random time delay in a visual tracking system. A number of simulations and experiments were done to show the validity of this study.