• Title/Summary/Keyword: Visual range

Search Result 1,324, Processing Time 0.023 seconds

Runway visual range prediction using Convolutional Neural Network with Weather information

  • Ku, SungKwan;Kim, Seungsu;Hong, Seokmin
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.190-194
    • /
    • 2018
  • The runway visual range is one of the important factors that decide the possibility of taking offs and landings of the airplane at local airports. The runway visual range is affected by weather conditions like fog, wind, etc. The pilots and aviation related workers check a local weather forecast such as runway visual range for safe flight. However there are several local airfields at which no other forecasting functions are provided due to realistic problems like the deterioration, breakdown, expensive purchasing cost of the measurement equipment. To this end, this study proposes a prediction model of runway visual range for a local airport by applying convolutional neural network that has been most commonly used for image/video recognition, image classification, natural language processing and so on to the prediction of runway visual range. For constituting the prediction model, we use the previous time series data of wind speed, humidity, temperature and runway visibility. This paper shows the usefulness of the proposed prediction model of runway visual range by comparing with the measured data.

A Study of Visual Field for Industrial Safety (산업 안전을 위한 시각영역에 관한 연구)

  • 윤훈용;심정훈
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.3
    • /
    • pp.9-15
    • /
    • 2002
  • Due to the inconsiderateness of human capability and inappropriate arrangement of display and control unit at the industrial site, the human error leads to a various accidents. This study was performed to investigate the visual range at the eye field and stationary field at the various angles with three different visual stimuli of alphabetic character, color slip and light-emitting diode. Three kinds of various alphabetic characters depending on length and breadth ratio (1:1, 3:5, 5:3) and three different colors (red, yellow, green) were used for the stimuli. Twenty-five subjects (11 males and 14 females) participated for this study. The results showed that female had wider visual range than male at the eye field, however no significant difference was found at the stationary field. The light-emitting diode had a widest visual range then color slip and characters are in order at the eye field and stationary field. For the character stimulus, the widest visual range was shown at length and breadth ratio of 1:1. The other ratios (3:5 and 5:3) showed no significant difference. The color of red had a widest visual range on the light-emitting diode, however, the color of yellow showed a widest visual range on the just color slip at the eye field. The result of this study would be valuable in applying to the design of visual display and the panel layout of control and displays in the industrial site.

Study on Analysis of Driver's Visual Characteristics in Road Traffic (도로교통에 있어서 운전자 주시특성분석)

  • 김대웅;임채문
    • Journal of Korean Society of Transportation
    • /
    • v.8 no.2
    • /
    • pp.7-25
    • /
    • 1990
  • In road traffic, road circumstances, vehicle, and driver are closely related each other. When road facilities are established in road planning, only road structure has been considered. However, relatively little work has been done regarding the relation between road circumstances and human with respect to a driver. This dissertation focuses on analysis of driver's visual characteristics to improve road circumstances. In this study, driver's visual characteristics are measured with eye-mark recorder and analyzed statistically. This study includes that visual characteristics, visual range, visual time, distribution of fixation duration, and visual moving angle with respect to road circumstances are established qualitatively and quantitatively by driving testing vehicle on streets, roads and high-ways. The main features of this study are : The driver's visual ranges are different over 10% depending on lane in multi-lanes. The visual range on two-lanes is more than twice as big as that on multi-lanes at 85% of whole vision. The right and left visual ranges by as big as that on multi-lanes at 85% of whole vision. The right and left visual ranges by as big as that on multi-lanes at 85% of whole vision. The right and left visual ranges by as big as that on multi-lanes at 85% of whole vision. The right and left visual ranges by speed are $34^{\circ}$ for 30-50km/hr, $28^{\circ}$ for 50-70km/hr, $22^{\circ}$ for 70-90km/hr and 16^{\circ} for over 90km/hr at 95% of visual rate. Accordingly, increasing speed results in narrow visual range.

  • PDF

A Study on the Color Characteristics of the Outer Wall of High-rise Apartment Buildings According to Visual Range (시거리에 따른 고층집합주택 외벽 색채 특성에 관한 연구)

  • Park Sung-Jin;Ha Ju-A;Lee Cheong-Woong
    • Journal of the Korean housing association
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • This study assumes that though buildings have identical color of the outer walls, their colors and images make the difference according to neighboring environmental factors and visual range. Based on the assumption, it carries a quantitative analysis of physical and image difference, targeting colors of the outer walls of high-rise apartment buildings within apartment complex. As a result, it is identified that the outer colors of the buildings on the streetside of high-rise residential complexes are significantly different according to neighboring environmental factors and viewers' visual range. And, it is suggested that in planning colors of outer wall, colors should be arranged in consideration of color difference according to visual range.

Study on Levee Visual Inspection Information System Building Using Mobile Technology

  • Kang, Seung-Hyun;Lee, Jong-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.6
    • /
    • pp.71-76
    • /
    • 2016
  • In this paper, we propose the mobile visual inspection information system using DGPS and portable range finder for levee safety inspection. Instead of existing visual inspection management method that is stored hand-written data, this system is designed to manage directly the visual inspection information using mobile devices in the field of levee. And through extracting accurate DGPS coordinates information about damage location of levee, this system is developed to ensure efficiency for the main task arising from the levee site such as inspection, maintenance and reinforcement. Furthermore, when damage has occurred at the point that inspector is not able to approach, this system can record the damage site data correctly, by converting data such as position, orientation and height of the damage point into the World Geodetic System coordinates. The position, orientation and height data was extracted automatically through the DGPS and portable range finder. And by applying the augmented reality method, this system was implemented for inspector to revisit the point of damage easily in order to perform the management, maintenance and reinforcement of the levee later.

An Analysis on the Range of Singular Fusion of Augmented Reality Devices

  • Lee, Hanul;Park, Minyoung;Lee, Hyeontaek;Choi, Hee-Jin
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.540-544
    • /
    • 2020
  • Current two-dimensional (2D) augmented reality (AR) devices present virtual image and information to a fixed focal plane, regardless of the various locations of ambient objects of interest around the observer. This limitation can lead to a visual discomfort caused by misalignments between the view of the ambient object of interest and the visual representation on the AR device due to a failing of the singular fusion. Since the misalignment becomes more severe as the depth difference gets greater, it can hamper visual understanding of the scene, interfering with task performance of the viewer. Thus, we analyzed the range of singular fusion (RSF) of AR images within which viewers can perceive the shape of an object presented on two different depth planes without difficulty due to the failure of singular fusion. It is expected that our analysis can inspire the development of advanced AR systems with low visual discomfort.

Development for Estimation Model of Runway Visual Range using Deep Neural Network (심층신경망을 활용한 활주로 가시거리 예측 모델 개발)

  • Ku, SungKwan;Hong, SeokMin
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.435-442
    • /
    • 2017
  • The runway visual range affected by fog and so on is one of the important indicators to determine whether aircraft can take off and land at the airport or not. In the case of airports where transportation airplanes are operated, major weather forecasts including the runway visual range for local area have been released and provided to aviation workers for recognizing that. This paper proposes a runway visual range estimation model with a deep neural network applied recently to various fields such as image processing, speech recognition, natural language processing, etc. It is developed and implemented for estimating a runway visual range of local airport with a deep neural network. It utilizes the past actual weather observation data of the applied airfield for constituting the learning of the neural network. It can show comparatively the accurate estimation result when it compares the results with the existing observation data. The proposed model can be used to generate weather information on the airfield for which no other forecasting function is available.

Live Electrooptic Imaging Camera for Real-Time Visual Accesses to Electric Waves in GHz Range

  • Tsuchiya, Masahiro;Shiozawa, Takahiro
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.290-297
    • /
    • 2011
  • Recent progresses in the live electrooptic imaging (LEI) technique are reviewed with emphasis on its functionality of real-time visual accesses to traveling electric waves in the GHz range. Together with the principles, configurations, and procedures for the visual observation experiments by an LEI camera system, the following results are described as examples indicating the wide application ranges of the technique; Ku-band waves on arrayed planar antennas, waves on a Gb/s-class digital circuit, W-band waves traveling both in slab-waveguide modes and aerially, backward-traveling wave along composite right/left-handed transmission line, and, waves in monolithic microwave integrated circuit module case.

A Study on the Improvement of Human Operators' Performance in Detection of External Defects in Visual Inspection (품질 검사자의 외관검사 검출력 향상방안에 관한 연구)

  • Han, Sung-Jae;Ham, Dong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.4
    • /
    • pp.67-74
    • /
    • 2019
  • Visual inspection is regarded as one of the critical activities for quality control in a manufacturing company. it is thus important to improve the performance of detecting a defective part or product. There are three probable working modes for visual inspection: fully automatic (by automatic machines), fully manual (by human operators), and semi-automatic (by collaboration between human operators and automatic machines). Most of the current studies on visual inspection have been focused on the improvement of automatic detection performance by developing a better automatic machine using computer vision technologies. However, there are still a range of situations where human operators should conduct visual inspection with/without automatic machines. In this situation, human operators'performance of visual inspection is significant to the successful quality control. However, visual inspection of components assembled into a mobile camera module belongs to those situations. This study aims to investigate human performance issues in visual inspection of the components, paying more attention to human errors. For this, Abstraction Hierarchy-based work domain modeling method was applied to examine a range of direct or indirect factors related to human errors and their relationships in the visual inspection of the components. Although this study was conducted in the context of manufacturing mobile camera modules, the proposed method would be easily generalized into other industries.

The View Character of Mountainscape of a City according to Visual Point Level - In a Case of Mt. Uam - (시가지내 산악경관의 시점 높이별 조망 특성 - 청주시 우암산을 대상으로 -)

  • Jeong, Jeong Seop;Gwon, Sang Jun;Jo, Tae Dong
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.497-503
    • /
    • 2004
  • In this research, we have performed a T-test to see how the relationship between dependent variable or visual point level and independent variable or visual quantity is in order to clear up the correlation between pattern of visual point and visual quantity by the constituents of a view from a different visual point level and the results are as follows: 1) In case of the character of Mt. Uam landscape of the city, Uamsan is set as a fixed point and about a direction of view(D), the north is a datum point from which the range of direction is distributed within 1800 westwardly and the visual range(R) is also within 2000m. An elevation is an average of 7.40 and the average story of the buildings is 3.85. Here the height of a story is about 4m so the average of the visual point difference is estimated at 15.4m. 2) The type of visual point is divided into the intersection group and the front of the highly used public buildings group. Double intersection types account for about 78.80%(52 spots) which forms a majority part of LCP. 3) The analysis of the difference of visual point level divided by eye level and that of the top of the buildings has been proved that there's a sharp difference resulted from t-test at 1 % significant level. The significant difference of elevation from height difference(l5.93m), however, has not been shown. 4) From the result of T-test about visual quantity by the elements of a view from a different visual point level, the visual quantity of mountain(VQM), sky(VQS), ground(VQG) is significant at about 1% each and that of building(VQB) is at about 5%. The difference in visual quantity of a mountain by the visual point level is at about 4% which can meet a marginal level of LCP necessary for evaluation of mountainscape.