• Title/Summary/Keyword: Visual feedback

Search Result 430, Processing Time 0.029 seconds

A Study on Real-Time Trajectory Tracking Control of SCARA Robot with Four Joints Based on Visual Feedback (영상 피드백에 의한 4축 스카라 로봇의 실시간 궤적추적제어에 관한 연구)

  • Jung, Yang-Guen;Shim, Hyun-Seok;Lee, Woo-Song;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.136-144
    • /
    • 2014
  • This paper proposes a new approach to the designed of visual feedback control system based on visual servoing method. The main focus of this paper is presents how it is effective to use many features for improving the accuracy of the visual feedback control of industrial articulated robot for assembling and inspection of parts. Some rank conditions, which relate the image Jacobian, and the control performance are derived. It is also proven that the accuracy is improved by increasing the number of features. The effectiveness of redundant features is verified by the real time experiments on a SCARA type robot(FARA) made in samsung electronics company.

Effects of Visual Feedback-Based Balance Training on Balance in Elderly Fallers (시각되먹임 균형훈련이 낙상을 경험한 노인의 균형에 미치는 효과)

  • Lee, Sun-Woo;Lee, Kyoung-Jin;Song, Chang-Ho
    • Journal of muscle and joint health
    • /
    • v.18 no.1
    • /
    • pp.16-27
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the effects of a visual feedbackbased balance training, using force platform biofeedback, on the postural balance of elderly faller. Methods: Fifty one community-dwelling older adults (aged 66-88 years) with a recent history of fall participated in the study. Participants were randomized to an experimental group (EG, n=25) and to a control group (CG, n=26). The EG participated in training sessions three times/week for 6 weeks. Visual feedbackbased balance training with the a computerized force platform with visual feedback screen was used in the experimental group. Static balance (center of gravity) and dynamic balance (Functional reach test, Timed "Up & Go" test, Berg balance scale) were assessed before and after end of training. Results: A significant improvement in static balance and dynamic balance were demonstrated within the EG (p<.05), but not in the CG. Conclusion: Visual feedback-based balance training may be an effective intervention to improve postural balance of elderly fallers.

Effects of a Bilateral upper Limb Training Program Using a Visual Feedback Method on Individuals with Chronic Stroke: A Pilot Clinical Trial

  • Kang, Dongheon;Park, Jiyoung;Choi, Chisun;Eun, Seon-Deok
    • International Journal of Contents
    • /
    • v.17 no.2
    • /
    • pp.20-31
    • /
    • 2021
  • This study aimed to pilot test a newly developed bilateral upper limb rehabilitation training program for improving the upper limb function of individuals with chronic stroke using a visual feedback method. The double-group pretest-posttest design pilot study included 10 individuals with chronic stroke (age >50 years). The intervention (four weekly meetings) consisted of five upper limb training protocols (wrist extension; forearm supination and pronation; elbow extension and shoulder flexion; weight-bearing shift; and shoulder, elbow, and wrist complex movements). Upper limb movement function recovery was assessed with the FuglMeyer Assessment of the Upper Extremity, the Wolf Motor Function Test, the Trunk Control Test, the modified Ashworth Scale, and the visual analog scale at baseline, immediately after, and four weeks after the intervention. The Fatigue Severity Scale was also employed. The Fugl-Meyer Assessment of the Upper Extremity and Wolf Motor Function Test showed significant improvement in upper limb motor function. The Trunk Control Test results increased slightly, and the modified Ashworth Scale decreased slightly, without statistical significance. The visual analog scale scores showed a significant decrease and the Fatigue Severity Scale scores were moderate or low. The bilateral upper limb training program using the visual feedback method could result in slight upper limb function improvements in individuals with chronic stroke.

Effect of Visual and Palpation Feedback on Muscle Activity of Gluteus Maximus and Motion of Pelvic Rotation during Clam Exercise (크램 운동 시 시각-촉진 되먹임이 큰볼기근 활성도와 골반 회전에 미치는 영향)

  • Koh, Eun-Kyung;Jung, Do-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.337-342
    • /
    • 2013
  • Purpose: This study was conducted in order to determine the effect of visual and tactile feedback on muscle activity of the gluteus maximus (Gmax) and abdominal muscles and the motion of pelvic rotation during performance of clam exercise (CE). Methods: Thirteen subjects without low back pain were recruited for this study. Each subject was instructed to perform the CE without and with feedback. The subjects were instructed to keep pelvic from rotating backwards by palpating the ASIS and monitoring the pelvic movement by themselves during performance of CE with feedback. The electromyographic (EMG) activities of Gmax and abdominal muscles were collected using surface EMG. Angles of pelvic rotation were measured using a 3-dimensional motion-analysis system. Paired t-tests were used for comparison of EMG activities in each muscle and the angle of pelvic rotation. Results: The EMG activities of all abdominal muscles were not significant between CM without and CM with feedback (p>0.05). The EMG activity of Gmax was significantly greater in CM with feedback compared with CM without feedback (without vs. with feedback; 14.2% vs. 20.7%MVIC) (p<0.05). The angle of pelvic rotation was significantly less in CM with feedback compared with CM without feedback (without vs. with feedback; $15.3^{\circ}$ vs. $10.8^{\circ}$ ) (p<0.05). Conclusion: Therefore, these findings suggest that CM with the visual and tactile feedback is effective in activation of the Gmax and correcting of the uncontrolled lumbopelvic rotation during CE.

Development Of Virtual Reality System For The Training And Assessment Of Proprioception During Upper-limb Reaching Task: A Pilot Study (상지재활 훈련동안 자기수용감각의 훈련 및 평가를 위한 가상현실 시스템 개발: 예비연구)

  • Cho, Sang-Woo;Ku, Jeong-Hun;Han, Ki-Wan;Lee, Hyeong-Rae;Park, Jin-Sick;Lee, Won-Ho;Shin, Young-Seok;Kim, Hong-Joon;Kang, Youn-Joo;Kim, In-Young;Kim, Sun-I.
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.749-753
    • /
    • 2008
  • Proprioception defined it as the ability to detect, the spatial position or movement of joints using balance, power of the muscle, agility in the internal parts of the body. In existing study for improvement of proprioception, reaching task training provided a feedback; the assessment was not provided a feedback. But, this has problem that it can not guide a proprioception from situation with visual feedback. Virtual reality technique can solve the problem of way providing feedback during training. In this study, we developed proprioception training program using virtual reality and pilot study is performed. VR task were composed three modes. In mode 1, real-time movement of the body was provided using visual feedback. In mode 2, body position was provided using visual feedback when participant have specific response. And in mode 3, body position was not provided. VR task is performed five sessions at each mode and one session performed one by one a three target. In the result of this study, the moving time toward the target from mode 3 was smaller than the moving time toward the target from mode 1 (p= 0.001). The correlation was statistically significant between mode 2 and mode 3 while be offering visual feedback position of mode 2 1session. But, the correlation was not statistically significant between mode 2 and mode 3 after be offered visual feedback position of mode2 1session (p = 0.012). Training environment of mode 1 shows which training used visual feedback than proprioception. Mode2 can execute training of proprioception because first session acquires visual feedback by proprioception. The next study will be verification of the system for training or assessment by clinical experiment.

  • PDF

Use of real-time ultrasound imaging for biofeedback of diaphragm motion during normal breathing in healthy subjects

  • Cho, Ji-Eun;Hwang, Dal-Yeon;Hahn, Joohee;Lee, Wan-Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.3
    • /
    • pp.95-101
    • /
    • 2018
  • Objective: To determine if the provision of visual biofeedback using real-time rehabilitative ultrasound imaging (RUSI) enhances the acquisition and retention of diaphragm muscle recruitment during exercise. Design: Two group pretest posttest design. Methods: Thirty healthy subjects were randomly assigned to the verbal feedback group (VG, n=15) or the visual and verbal feedback group (VVG, n=15). The VG performed breathing exercises 10 times with verbal feedback, and the VVG also performed breathing exercises 10 times with verbal feedback and visual feedback with the use of RUSI to measure changes in diaphragm thickness (DT). For DT, the mid-axillary lines between ribs 8 and 9 on both sides were measured in standing, and then the chest wall was perpendicularly illuminated using a linear transducer with the patients in supine to observe the region between rib 8 and 9 and to obtain 2-dimensional images. DT was measured as the distance between the two parallel lines that appeared bright in the middle of the pleura and the peritoneum. After one week, three repetitions (follow-up session) were performed to confirm retention effects. Intra- and between- group percent changes in diaphragm muscle thickness were assessed. Results: In the VVG, the intervention value had a medium effect size compared to the baseline value, but the follow-up value decreased to a small effect size. In the between-group comparisons, during the intervention session, the VVG showed no significant effect on percent change of DT but had a medium effect size compared to the VG (p=0.050, Cohen's d=0.764). During the follow-up session, retention effect did not persist (p=0.311, Cohen's d=0.381). Conclusions: RUSI can be used to provide visual biofeedback and improve performance and retention in the ability to activate the diaphragm muscle in healthy subjects. Future research needs to establish a protocol for respiratory intervention to maintain the effect of diaphragmatic breathing training using RUSI with visual feedback.

Adaptive Image Transmission Scheme for Vision-Based Telerobot Control (시각기반 원격로봇 제어를 위한 적응 영상전송기법)

  • Lee, Jong-Kwang;Yoon, Ji-Sup;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1637-1645
    • /
    • 2004
  • In remote control of telerobotics equipment, the real-time visual feedback is necessary in order to facilitate real-time control. Because of the network congestion and the associated delays, the real-time image feedback is generally difficult in the public networks like internet. If the remote user is not able to receive the image feedback within a certain time, the work performance may tend to decrease, and it makes difficulties to control of the telerobotics equipment. In this paper, we propose an improved visual feedback scheme over the internet for telerobotics system. The size of a remote site image and its quality are adjusted for efficient transmission. The constructed system has a better real-time update characteristics, and shows a potential for the real-time visual control of the telerobotics system.

The Effect of Visual Feedback Training on Balance and ADL in Cerebellar Ataxia : Case Report (시각되먹임 훈련이 소뇌 실조증 환자의 균형과 일상생활 수행에 미치는 영향 : 사례보고)

  • Yang, Hyun-Ju;Cho, Ba-Hoe;Jang, Jong-Sik
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.3 no.1
    • /
    • pp.43-53
    • /
    • 2013
  • Objective : The aim of this study was to identify the effect of visual feedback on balance and ADL in patient with cerebellar ataxia. Method : Between May of 2013, visual feedback applied to cerebellar ataxia patient. The visual feedback applied five times a week for two weeks to patient who are inpatients of Dae-jeon. To assess changes in balance, we performed the LOS, Romberg, BBS, We also assessed ADL using Canadian occupational performance measure(COPM). Result : For the patient of cerebellum ataxia, we can confirm the limitation of stability, and after the intervention, we can check out the changes which are maintained at Romberg test and Berg Balance Scale. In terms of daily activities, such as taking bath, moving to somewhere, using transportation, doing the laundry, and meeting activity, the level of performance and satisfaction has increased in all five fields. Conclusion : After the visual biofeedback training, patients with cerebellar Ataxia showed more increase in balance and ADL.

  • PDF

Comparison of Effects on Static Balance in Stroke Patients According to Visual Biofeedback Methods

  • Kyu-Seong Choi;Il-Ho Kwon;Won-Seob Shin
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.3
    • /
    • pp.320-326
    • /
    • 2023
  • Objective: The purpose of this study is to investigate the impact of visual biofeedback methods utilizing pressure sensors on the static balance of stroke patients. Design: Randomized crossover study. Methods: A total of 27 patients with hemiparesis participated in this study. The following three feedback conditions were considered: condition 1 (Knowledge of performance feedback), condition 2 (Knowledge of result feedback), and condition 3 (None feedback). A force plate was used to measure static balance. The total sway length, average sway velocity, x-axis excursion, and y-axis excursion of the center of pressure were measured. One-way repeated-measures analysis of variance was employed for comparisons of variables between each condition. The statistical significance level was set at α = 0.05 for all analyses. Results: There was a significant difference in the static balance results between each feedback condition (p<0.05). In the post-hoc results, it was confirmed that the static balance was significant in the order of knowledge of performance feedback, knowledge of result feedback, and none feedback. Conclusions: When comparing the three conditions, it was observed that knowledge of performance feedback showed the most improved effect on static balance ability. As further research progresses, that this approach could be used as an effective intervention method in clinical settings.

The Effects of Complex Exercise Program with Visual Feedback on Navicular Bone Height, Plantar Pressure and Low Extremity Alignment in Flat-Footed Patients (시각적 피드백을 병행한 복합운동프로그램이 편평발 환자의 발배뼈 높이, 족저압 및 다리 정렬에 미치는 영향)

  • Hoe-Song Yang;Chan-Joo Jeong;Young-Dae Yoo;Hyo-Jeong Kang;Min-Kyu Kim
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.269-279
    • /
    • 2023
  • Purpose : The most effective intervention for flat foot is strengthening exercises for the intrinsic and extrinsic of the foot. Additionally, visual feedback is necessary for movement accuracy. However, the effectiveness of the intervention when combined with visual feedback was not revealed. To confirm this, the research was to investigate the effect of visual feedback and a complex exercise program on navicular bone height, plantar pressure, and lower extremity alignment. Methods : The twenty eight adult men and women with flat foot were randomly assigned to group 1 (n=14) and group2 (n=14), group1 performed complex exercises with visual feedback, and group 2 performed only complex exercises. Both groups performed a 40 minute compound exercise program three times a week. Navicular drop test, plantar pressure test, and lower extremity alignment test were performed equally in both group. Results : As a result of comparing the change in navicular height within the group according to the intervention, both groups showed a significant difference before and after the exercise (p>.05). There was not significant difference comparing the difference between the groups in the navicular height (p>.05). Comparing the change in plantar pressure within groups, there was not significant difference in the change in plantar pressure in both groups (p>.05). Coparing the difference before and after exercise between groups, there was not significant plantar pressure (p>.05). Comparing the change in leg alignment within the group, there was a significant difference in the change in ankle before and after exercise in group 1 (p<.05), but there was not significant difference in group 2. There was not significant difference in pelvic tilt and knee tilt before and after exercise in both groups (p>.05). Comparing the before and after exercise difference between groups, there were not significant in all variables of leg alignment (p>.05). Conclusion : The results of this study showed that complex exercise applied to patients with flat foot were effective in increasing the height of the navicular bone and ankle angle, but there was no effect due to visual feedback.