• Title/Summary/Keyword: Visual direction

Search Result 660, Processing Time 0.024 seconds

SCALED VISUAL CURVATURE AND VISUAL FRENET FRAME FOR SPACE CURVES

  • Jeon, Myungjin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.37-53
    • /
    • 2021
  • In this paper we define scaled visual curvature and visual Frenet frame that can be visually accepted for discrete space curves. Scaled visual curvature is relatively simple compared to multi-scale visual curvature and easy to control the influence of noise. We adopt scaled minimizing directions of height functions on each neighborhood. Minimizing direction at a point of a curve is a direction that makes the point a local minimum. Minimizing direction can be given by a small noise around the point. To reduce this kind of influence of noise we exmine the direction whether it makes the point minimum in a neighborhood of some size. If this happens we call the direction scaled minimizing direction of C at p ∈ C in a neighborhood Br(p). Normal vector of a space curve is a second derivative of the curve but we characterize the normal vector of a curve by an integration of minimizing directions. Since integration is more robust to noise, we can find more robust definition of discrete normal vector, visual normal vector. On the other hand, the set of minimizing directions span the normal plane in the case of smooth curve. So we can find the tangent vector from minimizing directions. This lead to the definition of visual tangent vector which is orthogonal to the visual normal vector. By the cross product of visual tangent vector and visual normal vector, we can define visual binormal vector and form a Frenet frame. We examine these concepts to some discrete curve with noise and can see that the scaled visual curvature and visual Frenet frame approximate the original geometric invariants.

The Effects of Visual Direction Control on Balance and Gait Speed in Patients with Stroke (뇌졸중 환자의 시선 방향 조절이 균형과 보행에 미치는 영향)

  • Kwon, Hye-Rim;Shin, Won-Seob
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.3
    • /
    • pp.425-431
    • /
    • 2013
  • PURPOSE: The purpose of this study was to examine the effect of visual control on gait speed and balance in patients with stroke. Static balance and gait speed were investigated with comparison and fixed direction of visual. METHODS: We included twenty-six patients with stroke. Participants were measured static balance while standing on a forceplate with one of 4 different visual direction in front, floor, non-affected side and affected side for 30 seconds. To compare of the gait speed, participants had to walk with one of fixed visual direction. And to compare of gait speed with visual dispersion, gait speed were measured with visual change in left and right, up and down direction every 5m, 2m and 1m intervals. RESULTS: The result of the static balance with fixed visual showed that the affected side and the non-affected side were shown significantly increased sway of total sway length, mediolateral distance, anteroposterior distance, average velocity(p<.05). The gait speed with fixed visual showed that affected side was significantly slower(p<.05). And the gait speed significantly increased as interval of visual dispersion decrease in the sagittal and horizontal plane(p<.05). CONCLUSION: The results from this study showed that the visual direction effected on static balance and the faster visual movement made to increase the gait speed. Therefore the rehabilitation training with visual control may be implemented for stroke patients.

Effects of Preschoolers' Visual Perception on Reading Words in Hangul : Application of the Test of Visual Perception for Reading (유아의 시지각 발달과 읽기 : 수.방향.형태항상성 지각이 한글 단어 읽기에 미치는 영향)

  • Choi, Na-Ya
    • Korean Journal of Child Studies
    • /
    • v.30 no.2
    • /
    • pp.161-177
    • /
    • 2009
  • In this study of the relationship between preschoolers' visual perception and reading Hangul words, the 287 participants showed significant developmental change in visual perception between three to five years of age. The researcher developed the computer-based screening Test of Visual Perception for Reading (TVPR). Factor analysis confirmed three factors of TVPR : perception of number, direction, and form constancy. These factors correlated highly with four factors of motor-reduced visual perception of the Korean Developmental Test of Visual Perception (Moon et al. 2003). All factors of TVPR explained reading real words and pseudo words; direction and form constancy perception predicted reading low frequency letters. These findings confirm that preschoolers' skills in visual perception contribute to the reading of words in Hangul.

  • PDF

Comparison of Vertical and Horizontal Eye Movement Times in the Selection of Visual Targets by an Eye Input Device

  • Hong, Seung Kweon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.19-27
    • /
    • 2015
  • Objective: The aim of this study is to investigate how well eye movement times in visual target selection tasks by an eye input device follows the typical Fitts' Law and to compare vertical and horizontal eye movement times. Background: Typically manual pointing provides excellent fit to the Fitts' Law model. However, when an eye input device is used for the visual target selection tasks, there were some debates on whether the eye movement times in can be described by the Fitts' Law. More empirical studies should be added to resolve these debates. This study is an empirical study for resolving this debate. On the other hand, many researchers reported the direction of movement in typical manual pointing has some effects on the movement times. The other question in this study is whether the direction of eye movement also affects the eye movement times. Method: A cursor movement times in visual target selection tasks by both input devices were collected. The layout of visual targets was set up by two types. Cursor starting position for vertical movement times were in the top of the monitor and visual targets were located in the bottom, while cursor starting positions for horizontal movement times were in the right of the monitor and visual targets were located in the left. Results: Although eye movement time was described by the Fitts' Law, the error rate was high and correlation was relatively low ($R^2=0.80$ for horizontal movements and $R^2=0.66$ for vertical movements), compared to those of manual movement. According to the movement direction, manual movement times were not significantly different, but eye movement times were significantly different. Conclusion: Eye movement times in the selection of visual targets by an eye-gaze input device could be described and predicted by the Fitts' Law. Eye movement times were significantly different according to the direction of eye movement. Application: The results of this study might help to understand eye movement times in visual target selection tasks by the eye input devices.

Photo Retrieval System using Combination of Smart Sensor and Visual Descriptor (스마트 센서와 시각적 기술자를 결합한 사진 검색 시스템)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.45-52
    • /
    • 2014
  • This paper proposes an efficient photo retrieval system that automatically indexes for searching of relevant images, using a combination of geo-coded information, direction/location of image capture device and content-based visual features. A photo image is labeled with its GPS (Global Positioning System) coordinates and direction of the camera view at the moment of capture, and the label leads to generate a geo-spatial index with three core elements of latitude, longitude and viewing direction. Then, content-based visual features are extracted and combined with the geo-spatial information, for indexing and retrieving the photo images. For user's querying process, the proposed method adopts two steps as a progressive approach, filtering the relevant subset prior to use a content-based ranking function. To evaluate the performance of the proposed scheme, we assess the simulation performance in terms of average precision and F-score, using a natural photo collection. Comparing the proposed approach to retrieve using only visual features, an improvement of 20.8% was observed. The experimental results show that the proposed method exhibited a significant enhancement of around 7.2% in retrieval effectiveness, compared to previous work. These results reveal that a combination of context and content analysis is markedly more efficient and meaningful that using only visual feature for image search.

Effects of Whole Body Fatigue and Limited Visual Field on Postural Stability (전신 피로와 시야 제한이 자세균형 능력에 미치는 영향)

  • Park, Sung Ha
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.39-46
    • /
    • 2016
  • Loss of postural stability can possibly lead to slip and fall accidents in the number of workplaces and everyday life. This study was aimed to examine the effects of whole body fatigue and partially limited visual field on the ability of maintaining postural balance during quiet standing. A group of twelve healthy male subjects participated in the experiment. Before and after experiencing the whole body fatigue induced by bicycling exercises, the position coordinates of subject's center of pressure (COP) were obtained under the two levels of visual field condition (i.e., open visual field and limited visual field). Four levels of the whole body fatigue examined were rest, 300watt, 600watt, and 900watt. Position coordinates of COPs measured on a force plate were then converted into the total length of postural sway path in both the medio-lateral (ML) direction and the anterior-posterior (AP) direction. Two-way ANOVA result showed that the length of sway path in the AP direction became significantly larger as the whole body fatigue accumulated. Post-hoc test revealed statistically significant differences between rest and 900watt and between 300watt and 900watt. The significant increase of the sway length was also found when the visual field was partially obstructed by the boxes. In the ML direction, however, there was no statistically significant difference of the postural sway in both the AP and ML directions. The results imply that the ability of maintaining postural stability can be reduced significantly due to such tasks along with whole body fatigue. The postural balance can also be impaired by the limited visual field.

A Study of the Visual Effects by Variations in the Location of the Waistline and the Width of the Round Belt of the Basic Pants (베이직 팬츠의 허리선 위치(位置)와 라운드 벨트 폭(幅)의 변화(變化)에 따른 시각적(視覺的) 효과(效果))

  • Kim, Ji-Young;Lee, Jung-Soon
    • Journal of Fashion Business
    • /
    • v.9 no.5
    • /
    • pp.37-50
    • /
    • 2005
  • The purpose of this study is to present basic data that can express beautiful silhouette by studying visual effect that depend on waist position of basic pants and the change of round belt width and analyzing the study of visual effect of the pattern design as well as the effect of design component. The stimuli are 21 samples: 7 variations of the location of the waistline and 3 variations of the width of the belt. The data has been obtained from 35 fashion design majors. The data has analyzed by frequency, factor analysis, anova, scheffe's test and the MCA method. The visual effects by the location of waistline and the width of belt are composed of 3 factors : horizontal direction factor, vertical direction factor and flexuosity factor. In these factors, horizontal factor is estimated by most important factor. Visual effect is positive when belt width widens as the location of waist line goes down to position of low belt. And in case the location of waist line is in the position of natural waist belt and low rise belt, belt of 3.2cm width is effective visually. The interaction effects between the location of the waistline and the width of the belt have significant differences in all factors. Factor that appears in visual effect of basic pants can be evaluated differently according to pattern of pants and characteristic of body shape. So we may receive better visual assessment if we consider the location of waist belt and width of belt in side of visual effect and image, when we produce pants giving variety to crotch depth.

A Study of Visual-psychological Effect of Wood on the Human - For the Virtual Small Room - (목재가 인간에게 미치는 시각심리적 영향에 관한 기초적 연구 - 가상의 작은 방을 대상으로 -)

  • Nam, Young-Sook;Kim, Eun-Il
    • Journal of the Korean housing association
    • /
    • v.23 no.5
    • /
    • pp.95-102
    • /
    • 2012
  • We studied in order to find out suitable amounts of board by visual effects to establish indoor boards and human psychological effects by several board designs. Thirty students of C university were tested in constant temperature/humidity room and interviewed after tests. The experimental visual images were projected from 54' TV. As a result, the board length that showed high preference and satisfaction was the 90cm both horizontal and vertical direction. We found that vertical board gave an impression of a linear and narrow shape and the horizontal board gave wide space and cool feeling from psychological analytical study. The factors affecting satisfaction in horizontal direction were refreshing, intimacy, beauty, area, splendor and those in vertical direction were a sense of security, beauty, texture, intimacy, continuity, extensity, natural feeling. We got 5 factors from the result of factor analysis in order to get psychological factor axis. Those were pleasantness, artificiality, openness, dynamics, refinement. By multiple regression analysis, the factor pleasantness had the highest impact on visual satisfaction on scenary. The study on psychological factor difference by analysis of variance showed that psychologically feeling amount about pleasantness, artificiality, dynamics, refinement, and openness had statistically meaningful difference despite of board direction. We found that the 90cm had a tendency as a changing point leading image change by the investigative analysis of board direction based on factor points.

Development of a Control and Virtual Realty Visual System for the Tilting Train Simulator (틸팅 차량용 시뮬레이터 적용을 위한 통제 및 가상현실 영상 시스템 개발)

  • Song Young-Soo;Han Seong-Ho;Kim Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.330-336
    • /
    • 2005
  • This paper presents a development of the control and the virtual reality visual system for a tilting train simulator. The user of the tilting train simulator is able to set up the environmental and operating conditions through the user interface provided by the control system. In the control system, an arbitrary track which has user-defined curve radius, length and direction can be generated. The virtual reality visual system provides an artificial environment that is composed of several facilities such as station, platform, track, bridge, tunnel and signaling system. In order to maximize the reality, all of the 3D modeling were based on the real photographs taken in the Jungang line. A dome screen with 1600mm diameter was used to maximize the view angle. The hemispherical screen can ensure the view angle of the 170 degrees of vertical direction and 135 degrees of lateral direction.

Stereoscopic depth of surfaces lying in the same visual direction depends on the visual direction of surface features (표면 요소의 시선방향에 의한 동일시선 상에 놓여있는 표면의 입체시 깊이 변화)

  • Kham Keetaek
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.4
    • /
    • pp.1-14
    • /
    • 2004
  • When two objects are tying in the same visual direction there occurs abrupt depth change between two objects, which is against the assumption of the computational model for stereopsis on the surfaces in a natural scene. For this reason, this stimulus configuration is popularly used in the studies for the effectiveness of the constraints employed in the computational model. Contrary to the results from two nails (or objects) tying in the same visual direction, the two different surfaces from random-dot stereogram (RDS) in the same situation can be seen simultaneously in the different depth. The seemingly contradictory results between two situations my reflect the different strategies imposed by binocular mechanism for each situation during binocular matching process. Otherwise, the surfaces tying in the same visual direction is not equivalent situation to two objects tying in the same visual direction with regards to matching process. In order to examine above possibilities, the stereoscopic depth of the surface was measured after manipulating the visual direction of the surface elements. The visual direction of each dot pair from different surfaces in RDS (in Experiment 1) or the visual direction of line (hawing rectangle with regard to that of the vertical line (in Experiment 2) was manipulated. The stereoscopic depth of the surface was found to be varied depending on visual direction of the surface elements in both RDS and line hawing stimulus. Similar to the results from two nails situation depth of the surface was greatly reduced when each surface element was tying in the same visual direction as that of the other surface element or the other object. These results suggest that binocular mechanism imposes no different strategy in resolving correspondence problem in both two objects and two surfaces situation. And the results were discussed in the context of usefulness of the constraints employed in the computational model for stereopsis.

  • PDF