• Title/Summary/Keyword: Visual SLAM

Search Result 49, Processing Time 0.022 seconds

A New Feature-Based Visual SLAM Using Multi-Channel Dynamic Object Estimation (다중 채널 동적 객체 정보 추정을 통한 특징점 기반 Visual SLAM)

  • Geunhyeong Park;HyungGi Jo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.65-71
    • /
    • 2024
  • An indirect visual SLAM takes raw image data and exploits geometric information such as key-points and line edges. Due to various environmental changes, SLAM performance may decrease. The main problem is caused by dynamic objects especially in highly crowded environments. In this paper, we propose a robust feature-based visual SLAM, building on ORB-SLAM, via multi-channel dynamic objects estimation. An optical flow and deep learning-based object detection algorithm each estimate different types of dynamic object information. Proposed method incorporates two dynamic object information and creates multi-channel dynamic masks. In this method, information on actually moving dynamic objects and potential dynamic objects can be obtained. Finally, dynamic objects included in the masks are removed in feature extraction part. As a results, proposed method can obtain more precise camera poses. The superiority of our ORB-SLAM was verified to compared with conventional ORB-SLAM by the experiment using KITTI odometry dataset.

Visual SLAM using Local Bundle Optimization in Unstructured Seafloor Environment (국소 집단 최적화 기법을 적용한 비정형 해저면 환경에서의 비주얼 SLAM)

  • Hong, Seonghun;Kim, Jinwhan
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.197-205
    • /
    • 2014
  • As computer vision algorithms are developed on a continuous basis, the visual information from vision sensors has been widely used in the context of simultaneous localization and mapping (SLAM), called visual SLAM, which utilizes relative motion information between images. This research addresses a visual SLAM framework for online localization and mapping in an unstructured seabed environment that can be applied to a low-cost unmanned underwater vehicle equipped with a single monocular camera as a major measurement sensor. Typically, an image motion model with a predefined dimensionality can be corrupted by errors due to the violation of the model assumptions, which may lead to performance degradation of the visual SLAM estimation. To deal with the erroneous image motion model, this study employs a local bundle optimization (LBO) scheme when a closed loop is detected. The results of comparison between visual SLAM estimation with LBO and the other case are presented to validate the effectiveness of the proposed methodology.

Building a Mobile AR System Based on Visual SLAM (Visual SLAM 기반의 모바일 증강현실 시스템 구축)

  • Song, Ju Eun;Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.96-101
    • /
    • 2021
  • The SLAM market is growing rapidly with advances in Machine Learning, Drones, Augmented Reality technologies. However, due to the absence of an open source-based SLAM library for developing AR content, most SLAM researchers are required to conduct their own research and development to customize SLAM. In this paper, we propose an opensource-based Mobile Markerless AR System by building our own pipeline based on Visual SLAM. To implement the Mobile AR System of this paper, it uses ORB-SLAM3 and Unity Engine and We experimented with running our system in a real environment and confirming it in the Unity Engine's Mobile Viewer. Through this experimentation, we can verify that the Unity Engine and the SLAM System are tightly integrated and communicate smoothly. Also, we expect to accelerate the growth of SLAM technology through this research.

Image Enhancement for Visual SLAM in Low Illumination (저조도 환경에서 Visual SLAM을 위한 이미지 개선 방법)

  • Donggil You;Jihoon Jung;Hyeongjun Jeon;Changwan Han;Ilwoo Park;Junghyun Oh
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.66-71
    • /
    • 2023
  • As cameras have become primary sensors for mobile robots, vision based Simultaneous Localization and Mapping (SLAM) has achieved impressive results with the recent development of computer vision and deep learning. However, vision information has a disadvantage in that a lot of information disappears in a low-light environment. To overcome the problem, we propose an image enhancement method to perform visual SLAM in a low-light environment. Using the deep generative adversarial models and modified gamma correction, the quality of low-light images were improved. The proposed method is less sharp than the existing method, but it can be applied to ORB-SLAM in real time by dramatically reducing the amount of computation. The experimental results were able to prove the validity of the proposed method by applying to public Dataset TUM and VIVID++.

Visual SLAM-based Augmented Reality System using Topography and Architectural Heritage Model (지형 및 건축 문화유산 모형 활용 Visual-SLAM 기반 증강현실 시스템)

  • Yoo, Eunji;Yu, Jeong-Min
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.401-403
    • /
    • 2020
  • 본 논문에서는 박물관에서 사용되는 전시 매체 중 지형 및 건축 문화유산 모형을 활용한 Visual SLAM 기반 증강현실 시스템 활용을 제안한다. 현재 박물관에서 다양한 디지털 전시가 도입되고 관람객과의 상호작용을 중요시하고 있으나 오래전부터 도입된 지형 및 건축 문화유산 모형의 ICT 기술 활용은 미흡한 상황이다. 이에 본 연구에서 제안한 Visual SLAM 기반 증강현실 시스템은 현실 객체의 특징점을 인식하여 3D 객체를 증강하기 때문에 다양한 크기와 형태의 문화유산 모형에 활용될 수 있다. 이러한 시스템 제작을 제안함으로 박물관에 전시되어있는 기존 모형의 활용도 및 전시 효과를 높일 수 있고 다양한 인터랙션 설정으로 추가 정보 또한 제공할 수 있다.

  • PDF

A Practical Solution toward SLAM in Indoor environment Based on Visual Objects and Robust Sonar Features (가정환경을 위한 실용적인 SLAM 기법 개발 : 비전 센서와 초음파 센서의 통합)

  • Ahn, Sung-Hwan;Choi, Jin-Woo;Choi, Min-Yong;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.25-35
    • /
    • 2006
  • Improving practicality of SLAM requires various sensors to be fused effectively in order to cope with uncertainty induced from both environment and sensors. In this case, combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can remedy false data association and divergence problem of sonar sensors, and overcome low frequency SLAM update caused by computational burden and weakness in illumination changes of vision sensors. In this paper, we propose a SLAM method to join sonar sensors and stereo camera together. It consists of two schemes, extracting robust point and line features from sonar data and recognizing planar visual objects using multi-scale Harris corner detector and its SIFT descriptor from pre-constructed object database. And fusing sonar features and visual objects through EKF-SLAM can give correct data association via object recognition and high frequency update via sonar features. As a result, it can increase robustness and accuracy of SLAM in indoor environment. The performance of the proposed algorithm was verified by experiments in home -like environment.

  • PDF

Omni-directional Visual-LiDAR SLAM for Multi-Camera System (다중 카메라 시스템을 위한 전방위 Visual-LiDAR SLAM)

  • Javed, Zeeshan;Kim, Gon-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.353-358
    • /
    • 2022
  • Due to the limited field of view of the pinhole camera, there is a lack of stability and accuracy in camera pose estimation applications such as visual SLAM. Nowadays, multiple-camera setups and large field of cameras are used to solve such issues. However, a multiple-camera system increases the computation complexity of the algorithm. Therefore, in multiple camera-assisted visual simultaneous localization and mapping (vSLAM) the multi-view tracking algorithm is proposed that can be used to balance the budget of the features in tracking and local mapping. The proposed algorithm is based on PanoSLAM architecture with a panoramic camera model. To avoid the scale issue 3D LiDAR is fused with omnidirectional camera setup. The depth is directly estimated from 3D LiDAR and the remaining features are triangulated from pose information. To validate the method, we collected a dataset from the outdoor environment and performed extensive experiments. The accuracy was measured by the absolute trajectory error which shows comparable robustness in various environments.

Performance Analysis of Optimization Method and Filtering Method for Feature-based Monocular Visual SLAM (특징점 기반 단안 영상 SLAM의 최적화 기법 및 필터링 기법 성능 분석)

  • Jeon, Jin-Seok;Kim, Hyo-Joong;Shim, Duk-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.182-188
    • /
    • 2019
  • Autonomous mobile robots need SLAM (simultaneous localization and mapping) to look for the location and simultaneously to make the map around the location. In order to achieve visual SLAM, it is necessary to form an algorithm that detects and extracts feature points from camera images, and gets the camera pose and 3D points of the features. In this paper, we propose MPROSAC algorithm which combines MSAC and PROSAC, and compare the performance of optimization method and the filtering method for feature-based monocular visual SLAM. Sparse Bundle Adjustment (SBA) is used for the optimization method and the extended Kalman filter is used for the filtering method.

A Camera Pose Estimation Method for Rectangle Feature based Visual SLAM (사각형 특징 기반 Visual SLAM을 위한 자세 추정 방법)

  • Lee, Jae-Min;Kim, Gon-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • In this paper, we propose a method for estimating the pose of the camera using a rectangle feature utilized for the visual SLAM. A warped rectangle feature as a quadrilateral in the image by the perspective transformation is reconstructed by the Coupled Line Camera algorithm. In order to fully reconstruct a rectangle in the real world coordinate, the distance between the features and the camera is needed. The distance in the real world coordinate can be measured by using a stereo camera. Using properties of the line camera, the physical size of the rectangle feature can be induced from the distance. The correspondence between the quadrilateral in the image and the rectangle in the real world coordinate can restore the relative pose between the camera and the feature through obtaining the homography. In order to evaluate the performance, we analyzed the result of proposed method with its reference pose in Gazebo robot simulator.

SLAM Method by Disparity Change and Partial Segmentation of Scene Structure (시차변화(Disparity Change)와 장면의 부분 분할을 이용한 SLAM 방법)

  • Choi, Jaewoo;Lee, Chulhee;Eem, Changkyoung;Hong, Hyunki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.132-139
    • /
    • 2015
  • Visual SLAM(Simultaneous Localization And Mapping) has been used widely to estimate a mobile robot's location. Visual SLAM estimates relative motions with static visual features over image sequence. Because visual SLAM methods assume generally static features in the environment, we cannot obtain precise results in dynamic situation including many moving objects: cars and human beings. This paper presents a stereo vision based SLAM method in dynamic environment. First, we extract disparity map with stereo vision and compute optical flow. We then compute disparity change that is the estimated flow field between stereo views. After examining the disparity change value, we detect ROIs(Region Of Interest) in disparity space to determine dynamic scene objects. In indoor environment, many structural planes like walls may be determined as false dynamic elements. To solve this problem, we segment the scene into planar structure. More specifically, disparity values by the stereo vision are projected to X-Z plane and we employ Hough transform to determine planes. In final step, we remove ROIs nearby the walls and discriminate static scene elements in indoor environment. The experimental results show that the proposed method can obtain stable performance in dynamic environment.