• 제목/요약/키워드: Visual Question Answering

검색결과 13건 처리시간 0.017초

GuessWhat?! 문제에 대한 분석과 파훼 (Analyzing and Solving GuessWhat?!)

  • 이상우;한철호;허유정;강우영;전재현;장병탁
    • 정보과학회 논문지
    • /
    • 제45권1호
    • /
    • pp.30-35
    • /
    • 2018
  • GuessWhat?!은 질문자와 답변자로 구성된 두 플레이어가 이미지를 보고 질문자에게 비밀로 감추어진 정답 물체에 대해 예/아니오/잘 모르겠음 셋 중 하나로 묻고 답하며, 정답 물체를 추려 나가는 문제이다. GuessWhat?!은 최근 컴퓨터 비전과 인공지능 대화 시스템의 테스트베드로서 컴퓨터 비전과 인공지능 학계의 많은 관심을 받았다. 본 논문에서, 우리는 GuessWhat?! 게임 프레임워크가 가지는 특성에 대해 논의한다. 더 나아가, 우리는 제안된 틀을 기반으로 GuessWhat?!의 간단한 solution을 제안한다. 사람이 평균 4~5개 정도의 질문을 통하여 맞추는 이 문제에 대하여, 우리가 제안한 방법은 2개의 질문만으로 기존 딥러닝 기반 기술의 성능을 상회하는 성능을 보이며, 5개의 질문이 허용되면 인간 수준의 성능을 능가한다.

3차원 가상 실내 환경을 위한 심층 신경망 기반의 장면 그래프 생성 (Deep Neural Network-Based Scene Graph Generation for 3D Simulated Indoor Environments)

  • 신동협;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권5호
    • /
    • pp.205-212
    • /
    • 2019
  • 장면 그래프는 영상 내 물체들과 각 물체 간의 관계를 나타내는 지식 그래프를 의미한다. 본 논문에서는 3차원 실내 환경을 위한 3차원 장면 그래프를 생성하는 모델을 제안한다. 3차원 장면 그래프는 물체들의 종류와 위치, 그리고 속성들뿐만 아니라, 물체들 간의 3차원 공간 관계들도 포함한다. 따라서 3차원 장면 그래프는 에이전트가 활동할 실내 환경을 묘사하는 하나의 사전 지식 베이스로 볼 수 있다. 이러한 3차원 장면 그래프는 영상 기반의 질문과 응답, 서비스 로봇 등과 같은 다양한 분야에서 유용하게 활용될 수 있다. 본 논문에서 제안하는 3차원 장면 그래프 생성 모델은 크게 물체 탐지 네트워크(ObjNet), 속성 예측 네트워크(AttNet), 변환 네트워크(TransNet), 관계 예측 네트워크(RelNet) 등 총 4가지 부분 네트워크들로 구성된다. AI2-THOR가 제공하는 3차원 실내 가상환경들을 이용한 다양한 실험들을 통해, 본 논문에서 제안한 모델의 높은 성능을 확인할 수 있었다.

Using Roots and Patterns to Detect Arabic Verbs without Affixes Removal

  • Abdulmonem Ahmed;Aybaba Hancrliogullari;Ali Riza Tosun
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.1-6
    • /
    • 2023
  • Morphological analysis is a branch of natural language processing, is now a rapidly growing field. The fundamental tenet of morphological analysis is that it can establish the roots or stems of words and enable comparison to the original term. Arabic is a highly inflected and derivational language and it has a strong structure. Each root or stem can have a large number of affixes attached to it due to the non-concatenative nature of Arabic morphology, increasing the number of possible inflected words that can be created. Accurate verb recognition and extraction are necessary nearly all issues in well-known study topics include Web Search, Information Retrieval, Machine Translation, Question Answering and so forth. in this work we have designed and implemented an algorithm to detect and recognize Arbic Verbs from Arabic text.The suggested technique was created with "Python" and the "pyqt5" visual package, allowing for quick modification and easy addition of new patterns. We employed 17 alternative patterns to represent all verbs in terms of singular, plural, masculine, and feminine pronouns as well as past, present, and imperative verb tenses. All of the verbs that matched these patterns were used when a verb has a root, and the outcomes were reliable. The approach is able to recognize all verbs with the same structure without requiring any alterations to the code or design. The verbs that are not recognized by our method have no antecedents in the Arabic roots. According to our work, the strategy can rapidly and precisely identify verbs with roots, but it cannot be used to identify verbs that are not in the Arabic language. We advise employing a hybrid approach that combines many principles as a result.