• Title/Summary/Keyword: Visual Object

Search Result 1,237, Processing Time 0.027 seconds

Object Feature Tracking Algorithm based on Siame-FPN (Siame-FPN기반 객체 특징 추적 알고리즘)

  • Kim, Jong-Chan;Lim, Su-Chang
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.247-256
    • /
    • 2022
  • Visual tracking of selected target objects is fundamental challenging problems in computer vision. Object tracking localize the region of target object with bounding box in the video. We propose a Siam-FPN based custom fully CNN to solve visual tracking problems by regressing the target area in an end-to-end manner. A method of preserving the feature information flow using a feature map connection structure was applied. In this way, information is preserved and emphasized across the network. To regress object region and to classify object, the region proposal network was connected with the Siamese network. The performance of the tracking algorithm was evaluated using the OTB-100 dataset. Success Plot and Precision Plot were used as evaluation matrix. As a result of the experiment, 0.621 in Success Plot and 0.838 in Precision Plot were achieved.

Stereo Vision-based Visual Odometry Using Robust Visual Feature in Dynamic Environment (동적 환경에서 강인한 영상특징을 이용한 스테레오 비전 기반의 비주얼 오도메트리)

  • Jung, Sang-Jun;Song, Jae-Bok;Kang, Sin-Cheon
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.263-269
    • /
    • 2008
  • Visual odometry is a popular approach to estimating robot motion using a monocular or stereo camera. This paper proposes a novel visual odometry scheme using a stereo camera for robust estimation of a 6 DOF motion in the dynamic environment. The false results of feature matching and the uncertainty of depth information provided by the camera can generate the outliers which deteriorate the estimation. The outliers are removed by analyzing the magnitude histogram of the motion vector of the corresponding features and the RANSAC algorithm. The features extracted from a dynamic object such as a human also makes the motion estimation inaccurate. To eliminate the effect of a dynamic object, several candidates of dynamic objects are generated by clustering the 3D position of features and each candidate is checked based on the standard deviation of features on whether it is a real dynamic object or not. The accuracy and practicality of the proposed scheme are verified by several experiments and comparisons with both IMU and wheel-based odometry. It is shown that the proposed scheme works well when wheel slip occurs or dynamic objects exist.

  • PDF

Image-based Surfel Reconstruction by LDI Plane Sweeping (LDI 평면 이동에 의한 이미지 기반 Surfel 복원)

  • Lee, Jung;Kim, Chang-Hun
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.947-954
    • /
    • 2009
  • This paper proposes a novel method that reconstructs a surfel-based object by using visual hull from multiple images. The surfel is a point primitive that effectively approximates point-set surface. We create the surfel representation of an object from images by combining the LDC(Layered Depth Cube) surfel sampling with the concept of visual hull that represents the approximated shape from input images. Because the surfel representation requires relatively smaller memory resources than the polygonal one and its LDC resolution is freely changed, we can control the reconstruction quality of the target object and acquire the maximal quality on the given memory resource.

Design of a Visual Servoing System of an Autonomous Mobile Robot using Fuzzy Logic System (자율이동로봇의 목표물 추적을 위한 시각구동장치의 설계 및 제어)

  • Song Un-Ji;Choi Byung-Jae;Yoo Seog-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.454-459
    • /
    • 2006
  • The research and development for autonomous mobile robots has widely been reported. This paper describes a fuzzy logic based visual servoing system for an autonomous mobile robot. An existing system always needs to keep a moving object in overall image. This makes difficult to move the autonomous mobile robot spontaneously. In this paper we first explain an autonomous mobile robot and fuzzy logic system. And then we design a fuzzy logic based visual servoing system. We extract some features of the object from an overall image and then design a fuzzy logic system for controlling the visual servoing system to an exact position. We here introduce a shooting robot that can track an object and hit it. We show that the proposed system presents a desirable performance by a computer simulation and some experiments.

Object Dimension Estimation for Remote Visual Inspection in Borescope Systems

  • Kim, Hyun-Sik;Park, Yong-Suk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4160-4173
    • /
    • 2019
  • Borescopes facilitate the inspection of areas inside machines and systems that are not directly accessible for visual inspection. They offer real-time, up-close access to confined and hard-to-access spaces without having to dismantle or destructure the object under inspection. Borescopes are ideal instruments for routine maintenance, quality inspection and monitoring of systems and structures. The main application being fault or defect detection, it is useful to have measuring capability to quantify object dimensions in a target area. High-end borescopes use multi-optic solutions to provide measurement information of viewed objects. Multi-optic solutions can provide accurate measurements at the expense of structural complexity and cost increase. Measuring functionality is often unavailable in low-end, single camera borescopes. In this paper, a single camera measurement solution that enables the size estimation of viewed objects is proposed. The proposed solution computes and overlays a scaled grid of known spacing value over the screen view, enabling the human inspector to estimate the size of the objects in view. The proposed method provides a simple means of measurement that is applicable to low-end borescopes with no built-in measurement capability.

Weighted Parameter Analysis of L1 Minimization for Occlusion Problem in Visual Tracking (영상 추적의 Occlusion 문제 해결을 위한 L1 Minimization의 Weighted Parameter 분석)

  • Wibowo, Suryo Adhi;Jang, Eunseok;Lee, Hansoo;Kim, Sungshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.101-103
    • /
    • 2016
  • Recently, the target object can be represented as sparse coefficient vector in visual tracking. Due to this reason, exploitation of the compressibility in the transform domain by using L1 minimization is needed. Further, L1 minimization is proposed to handle the occlusion problem in visual tracking, since tracking failures mostly are caused by occlusion. Furthermore, there is a weighted parameter in L1 minimization that influences the result of this minimization. In this paper, this parameter is analyzed for occlusion problem in visual tracking. Several coefficients that derived from median value of the target object, mean value of the arget object, the standard deviation of the target object are, 0, 0.1, and 0.01 are used as weighted parameter of L1 minimization. Based on the experimental results, the value which is equal to 0.1 is suggested as weighted parameter of L1 minimization, due to achieved the best result of success rate and precision performance parameter. Both of these performance parameters are based on one pass evaluation (OPE).

  • PDF

The Tool Coordinate Adjustment Algorithm for Robot Manipulators with Visual Sensor (시각 센서에 의한 로봇 매니퓰레이터의 툴 좌표계 보정에 관한 연구)

  • 이용중;김학범;이양범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1453-1463
    • /
    • 1994
  • Recently many robot manipulators are used for various areas of industriesand factories. It has been frequently observed that the robot manipulator fails to complete the function when the object changes its original position, Due to the unexpected impacts and vibrations the center and direction of the object would be shifted in many real application. In this study, a visual sensing algorithm for the robot manipulator is proposed. The algorithm consists of two parts : Detection of the object migration and adjustments of the orobot manipulators Tool Coordinate System. The image filtering technique with visual sensor is applied for the first part of the algorithm. The change of illumination intensity indicates the object migration. Once the object migration is detected, the second part of the algorithm calculates the current position of the object. Then it adjusts the robot manipulators Tool Coordinate System. The robot manipulator and the Visual sensor communicate each other using interrupt technique via proposed algorithm. It has been observed that the proposed algorithm reduces the malfunction of a robot manipulator significantly. Thus it can provide better line balance-up of the manufacturing processes and prevent industrial accidents efficiently.

  • PDF

The Semantic Function of Representation in Contemporary Visual Art (현대 시각예술에서 재현의 의미기능)

  • Choi Kwang-Jin
    • Journal of Science of Art and Design
    • /
    • v.4
    • /
    • pp.67-90
    • /
    • 2002
  • What is the semantic function of visual image in Contemporary art? This article proposes that representation is semantically still important in post-modernism as well as in modernism. The semantic function of representation has been changed by keeping pace with times. In modernism the 'outer representation' changed to 'inner representation', and in postmodernism the 'inner representation' changed to 'metaphorical representation'. The 'outer representation' means that image indicates a certain object or subject as the classical realism. In this case, the meaning of image is subordinate to an object, and a one-to-one correspond existed between the image and the object. Because this 'outer representation' is focused on an object but subject's intention, the indicative function of meaning is definite and singular. The 'inner representation' means that image exposes the fundamentals or process of an object. In this case, the meaning of image resolves itself into an absolute fundamental, and one-to-many correspond existed between the image and the object. Because this 'inner representation' is focused on essence and substance but an external form, the indicative function of meaning is inclusive and general. The 'metaphorical representation' means that image critically relates social constraint and condition as metaphor and allegory. In this case, the meaning of image is not subordinate to an object and a subject, and the image and the object indicate interactively. Because this 'metaphorical representation' is focused on interaction between subject, object, and interpreter, the indicative function of meaning is differant and ecological. This article focused on the representation because I believe that continuous thinking of totality can be opened by cognitive mapping, even though we never understand the world totally in the chaotic post modern age.

  • PDF

Trajectory Generation of a Moving Object for a Mobile Robot in Predictable Environment

  • Jin, Tae-Seok;Lee, Jang-Myung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.27-35
    • /
    • 2004
  • In the field of machine vision using a single camera mounted on a mobile robot, although the detection and tracking of moving objects from a moving observer, is complex and computationally demanding task. In this paper, we propose a new scheme for a mobile robot to track and capture a moving object using images of a camera. The system consists of the following modules: data acquisition, feature extraction and visual tracking, and trajectory generation. And a single camera is used as visual sensors to capture image sequences of a moving object. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the active camera. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time trajectory to capture the moving object, the linear and angular velocities are estimated and utilized. The experimental results of tracking and capturing of the target object with the mobile robot are presented.

Physically-based Haptic Rendering of a Deformable Object Using Two Dimensional Visual Information for Teleoperation (원격조작을 위한 이차원 영상정보를 이용한 변형체의 물리적 모델 기반 햅틱 렌더링)

  • Kim, Jung-Sik;Kim, Jung
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02c
    • /
    • pp.19-24
    • /
    • 2008
  • This paper presents a physically-based haptic rendering algorithm for a deformable object based on visual information about the intervention between a tool and a real object in a remote place. The physically-based model of a deformable object is created from the mechanical properties of the object and the captured image obtained with a CCD camera. When a slave system exerts manipulation tasks on a deformable object, the reaction force for haptic rendering is computed using boundary element method. Snakes algorithm is used to obtain the geometry information of a deformable object. The proposed haptic rendering algorithm can provide haptic feedback to a user without using a force transducer in a teleoperation system.

  • PDF