• 제목/요약/키워드: Visual Mining

검색결과 68건 처리시간 0.021초

'미술'과 '언어' 활동 융합형의 아동 발달지원 교육 프레임워크 개발을 위한 탐색적 연구: 텍스트 마이닝을 중심으로 (An exploratory study for the development of a education framework for supporting children's development in the convergence of "art activity" and "language activity": Focused on Text mining method)

  • 박윤미;김시정
    • 한국융합학회논문지
    • /
    • 제12권3호
    • /
    • pp.297-304
    • /
    • 2021
  • 이 연구는 학령기 아동의 발달지원을 위하여 기존의 미술 치료 및 교육에서 시행되어 온 시각적 사고 중심의 접근에 더하여, 언어 교육 및 치료적 접근을 융합하고자 한 것이다. 이에 언어와 미술의 서로 다른 영역의 융합 가능 영역을 탐색하기 위하여 텍스트 마이닝 기법을 적용하였다. 이에 따라 이 연구는 기초 연구, 예비 DB구축, 텍스트 선별, DB 전 처리 및 확정, 불용어 처리, 텍스트 마이닝 분석 및 융합 가능 역 도출'의 절차에 따라 연구를 진행하였다. 연구 결과, 미술 치료 및 교육과 언어 치료 및 교육 분야에서 나타나는 문헌상의 각 군집을 연계하여 의사소통 및 학습 기능, 문제해결 및 감각 기관, 예술 및 지능, 정보와 의사소통, 가정 및 장애, 주제와 개념화 및 또래, 통합과 재구성 및 태도 등과 관련된 융합역을 도출할 수 있었다. 결론적으로 본 연구를 통하여 향후 미술과 언어의 활동 중심 융합형 프로그램을 설계할 수 있는 프레임워크를 마련하고 아동발달 지원을 위한 총체적 접근을 시도하였다는 점에서 연구의 의의가 있다.

웹 데이터 마이닝을 위한 정보 추출패턴의 기계학습 (Machine Learning of Information Extract ion Patterns for Web Data Mining)

  • 김동석;차정원;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.115-122
    • /
    • 2001
  • 정보추출 기법을 논의할 때 핵심 역할을 차지하는 것이 추출 패턴(규칙)을 표현하는 종류와 규칙을 만들어 내는 기계학습의 방법이다. 본 논문에서는 mDTD(modified Document Type Definition)라는 새로운 추출패턴을 제안한다. mDTD는 SGML에서 사용되는 DTD를 구문과 해석 방식을 변형하여 일반적인 HTML에서의 정보추출에 활용되도록 설계하였다. 이러한 개념은 DTD가 문서에 나타나는 객체를 지정하는 역할을 하는 것을 역으로 mDTD를 이용하여 문서에 나타는 객체를 식별하는데 사용하는 것이다. mDTD 규칙을 순차기계학습으로 확장시켜서 한국어와 영어로된 인터넷 쇼핑몰 중에서 AV(Audio and Visual product) 도메인에 적용하여 실험하였다 실험 결과로 정보추출의 평균 정확도은 한국어와 영어에 대해서 각각 91.3%와 81.9%를 얻었다.

  • PDF

보험사기행동모형 개발에 관한 실증적 연구 (An Empirical Study on the Development of Behavior Model of Insurance Fraud)

  • 이명진;김광용
    • 한국IT서비스학회지
    • /
    • 제6권2호
    • /
    • pp.1-18
    • /
    • 2007
  • Many researches have been done in insurance fraud as the amount and frequency of insurance fraud have been increasing continuously. In particular, the development of insurance fraud detection system using large database management techniques including data mining or link analysis based on visual method have been the main research topic in insurance fraud. However, this kinds of detection system were very ineffective to find unintentional insurance fraud happened by accident even though it was so good to find intentional and organized crime insurance fraud. Therefore, this research suggests insurance fraud as an ethical decision making and applies TPB(Theory of Planned Behavior) for the finding of reasons and prevention strategies of unintentional insurance fraud happened by accident. The results of research show that TPB is very appropriate model to explain the behavior of insurance fraud and that insurance agents force to do insurance fraud as affecting perceived behavior control. Therefore, education and pubic relations for insurance fraud are very effective for preventing insurance fraud and developing insurance service industry.

교육 빅데이터 관련 연구 동향 (Current Status of Educational Big Data Research)

  • 이은경;박도영;최인봉
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2014년도 제50차 하계학술대회논문집 22권2호
    • /
    • pp.175-176
    • /
    • 2014
  • 본고에서는 교육 빅데이터의 개념, 가치, 처리 기술 및 분석 방법 등을 탐색하였다. '온라인과 오프라인 교수 학습 활동의 투입, 과정, 산출을 통해 생산되는 국가, 지역, 학교, 교사, 학생 수준의 자료'로 정의할 수 있는 교육 빅데이터는 Hadoop으로 대표되는 분산 컴퓨팅 기술을 통해 효율적으로 처리할 수 있다. 대규모 교육 자료에서 의미있고 유용한 결과를 도출하기 위해 주로 사용되는 분석 방법에는 교육 데이터 마이닝, 학습 분석학과 시각 자료 분석학이 있다. 교육 데이터 마이닝은 학생과 교사, 학교의 다양한 수준에서 자료를 폭넓게 분석하는 측면이 강한 반면에 학습 분석학은 학생 수준에서의 자료 분석에 더 초점을 맞추는 경향이 있으며, 시각 자료 분석학은 자료에 대한 분석 자체보다는 분석 결과를 효과적으로 표현하는 방식에 초점이 주어져 있다.

  • PDF

대량의 트랜잭션을 처리하는 블록체인을 위한 분산처리 시스템 (Distributed processing system for blockchain processing a large number of transactions)

  • 고혁준;한성수;정창성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.65-67
    • /
    • 2019
  • 최근 비트코인(Bitcoin)과 이더리움(Etherium)과 같은 퍼블릭 블록체인(Public Blockchain) 사용자의 급격한 증가로 인하여 블록체인 지갑 사용자가 늘어나고 있다. 또한, 암호화폐 거래소의 거래량이 증가와 이로 인한 지갑의 잔액 조회와 코인 이체를 위한 트랜잭션이 빈번하게 이루어 지고 있다. 한편, 최신의 잔액 조회와 빠른 이체를 위하여 마이닝 풀(Mining Pool)에서 사용되는 노드(Node)를 사용하는 것 같이 트래픽이 일부 노드에 집중되는 현상이 발생하여 시스템의 성능이 저하되는 문제가 있다. 이러한 문제를 해결하기 위하여 본 연구에서는 아파치 카프카(Apache Kafka)를 이용하여 트래픽 분산처리를 통한 효율적인 시스템을 제안한다. 또한, 시스템의 구조 설계 및 상세 모듈 설계를 제안한다. 제안 시스템은 기존 블록체인 시스템과의 연계가 가능하며, 기존 시스템의 변경 없이 구축할 수 있다. 또한, 주키퍼(ZooKeeper)의 분산처리를 통해 고성능과 가용성 및 안정성을 확보할 수 있다.

소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구 (Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company)

  • 김유신;권도영;정승렬
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.89-105
    • /
    • 2014
  • Web2.0의 등장과 함께 급속히 발전해온 온라인 포럼, 블로그, 트위터, 페이스북과 같은 소셜 미디어 서비스는 소비자와 소비자간의 의사소통을 넘어 이제 기업과 소비자 사이의 새로운 커뮤니케이션 매체로도 인식되고 있다. 때문에 기업뿐만 아니라 수많은 기관, 조직 등에서도 소셜미디어를 활용하여 소비자와 적극적인 의사소통을 전개하고 있으며, 나아가 소셜 미디어 콘텐츠에 담겨있는 소비자 고객들의 의견, 관심, 불만, 평판 등을 분석하고 이해하며 비즈니스에 적용하기 위해 이를 적극 분석하는 단계로 진화하고 있다. 이러한 연구의 한 분야로서 비정형 텍스트 콘텐츠와 같은 빅 데이터에서 저자의 감성이나 의견 등을 추출하는 오피니언 마이닝과 감성분석 기법이 소셜미디어 콘텐츠 분석에도 활발히 이용되고 있으며, 이미 여러 연구에서 이를 위한 방법론, 테크닉, 툴 등을 제시하고 있다. 그러나 아직 대량의 소셜미디어 데이터를 수집하여 언어처리를 거치고 의미를 해석하여 비즈니스 인사이트를 도출하는 전반의 과정을 제시한 연구가 많지 않으며, 그 결과를 의사결정자들이 쉽게 이해할 수 있는 시각화 기법으로 풀어내는 것 또한 드문 실정이다. 그러므로 본 연구에서는 소셜미디어 콘텐츠의 오피니언 마이닝을 위한 실무적인 분석방법을 제시하고 이를 통해 기업의사결정을 지원할 수 있는 시각화된 결과물을 제시하고자 하였다. 이를 위해 한국 인스턴트 식품 1위 기업의 대표 상품인 N-라면을 사례 연구의 대상으로 실제 블로그 데이터와 뉴스를 수집/분석하고 결과를 도출하였다. 또한 이런 과정에서 프리웨어 오픈 소스 R을 이용함으로써 비용부담 없이 어떤 조직에서도 적용할 수 있는 레퍼런스를 구현하였다. 그러므로 저자들은 본 연구의 분석방법과 결과물들이 식품산업뿐만 아니라 타 산업에서도 바로 적용 가능한 실용적 가이드와 참조자료가 될 것으로 기대한다.

인간의 일상동작 인식을 위한 동작 데이터 모델링과 가시화 기법 (Activity Data Modeling and Visualization Method for Human Life Activity Recognition)

  • 최정인;용환승
    • 한국멀티미디어학회논문지
    • /
    • 제15권8호
    • /
    • pp.1059-1066
    • /
    • 2012
  • 오늘날 스마트폰의 발전으로 스마트폰 내장 센서를 통해 사용자의 개인 정보를 쉽게 파악 할 수 있고 원한다면 사용자의 위치를 실시간으로 알아낼 수 있다. 그리하여 센서를 통해 추출된 데이터를 통해 동작인식과 생활 패턴 인식에 관한 연구가 급증하고 있다. 본 논문에서는 기존의 동작 인식 연구에서 추출되는 데이터를 정형화하기 위해 동작 데이터를 모델링하였다. 본 논문의 일상 동작 모델링은 이론적 분석이다. 동작을 크게 두 가지로 분류시켜 가속도 센서만으로 인식 가능한 기본 동작을 물리적 동작으로 정의하고 그 외 목적과 대상, 장소를 포함하는 모든 동작을 논리적 동작으로 분류시켰다. 모델링 된 데이터를 기반으로 각 동작의 특성에 맞게 가시화 하는 방안을 제안하였다. 본 연구를 통해 인간의 일상생활을 동작별로 간편하게 표준화 할 수 있고 기존의 동작 인식 연구에서 추출되는 동작 데이터를 사용자의 요구에 따라 가시화 할 수 있다.

빅데이터 분석을 활용한 스마트팩토리 연구 동향 분석 (Analysis of Smart Factory Research Trends Based on Big Data Analysis)

  • 이은지;조철호
    • 품질경영학회지
    • /
    • 제49권4호
    • /
    • pp.551-567
    • /
    • 2021
  • Purpose: The purpose of this paper is to present implications by analyzing research trends on smart factories by text analysis and visual analysis(Comprehensive/ Fields / Years-based) which are big data analyses, by collecting data based on previous studies on smart factories. Methods: For the collection of analysis data, deep learning was used in the integrated search on the Academic Research Information Service (www.riss.kr) to search for "SMART FACTORY" and "Smart Factory" as search terms, and the titles and Korean abstracts were scrapped out of the extracted paper and they are organize into EXCEL. For the final step, 739 papers derived were analyzed using the Rx64 4.0.2 program and Rstudio using text mining, one of the big data analysis techniques, and Word Cloud for visualization. Results: The results of this study are as follows; Smart factory research slowed down from 2005 to 2014, but until 2019, research increased rapidly. According to the analysis by fields, smart factories were studied in the order of engineering, social science, and complex science. There were many 'engineering' fields in the early stages of smart factories, and research was expanded to 'social science'. In particular, since 2015, it has been studied in various disciplines such as 'complex studies'. Overall, in keyword analysis, the keywords such as 'technology', 'data', and 'analysis' are most likely to appear, and it was analyzed that there were some differences by fields and years. Conclusion: Government support and expert support for smart factories should be activated, and researches on technology-based strategies are needed. In the future, it is necessary to take various approaches to smart factories. If researches are conducted in consideration of the environment or energy, it is judged that bigger implications can be presented.

광산지역 지반침하 모니터링을 위한 미소진동 분석프로그램 개발 현황 (Microseismic Data Analysis Program for Monitoring Ground Subsidence in Mining Area)

  • 박주현;박제현;양인재;김중열;김유성;권성일;권형일
    • 지구물리와물리탐사
    • /
    • 제21권4호
    • /
    • pp.262-272
    • /
    • 2018
  • 폐광지역 채굴적의 지반침하 징후를 분석하기 위해 지중변위의 발생에 따른 미소진동을 모니터링하기 위한 시스템이 일부 광산지역에서 운영되고 있다. 이러한 미소진동을 모니터링하기 위한 시스템은 크게 3성분 수진기, 데이터 로거 및 분석 프로그램으로 구성된다. 이 중 분석프로그램은 기존 P파 초동을 이용한 미소진동 발생 위치분석만을 수행하였으나 프로그램의 업그레이드를 통해 PS시를 이용한 위치분석이 가능해졌다. 또한 현장의 고유계수 및 파형분석을 통해 미소진동의 규모를 계산할 수 있는 기능이 추가되었다. 그리고 미소진동 분석 결과를 현장 사진과 중첩하는 기능을 추가하여 시각적으로 미소진동 발생위치를 확인 가능하도록 하였다.

CSR·CSV·ESG 연구 동향 분석 - 빅데이터 분석을 중심으로 - (Analysis of CSR·CSV·ESG Research Trends - Based on Big Data Analysis -)

  • 이은지;문재영
    • 품질경영학회지
    • /
    • 제50권4호
    • /
    • pp.751-776
    • /
    • 2022
  • Purpose: The purpose of this paper is to present implications by analyzing research trends on CSR, CSV and ESG by text analysis and visual analysis(Comprehensive/ Fields / Years-based) which are big data analyses, by collecting data based on previous studies on CSR, CSV and ESG. Methods: For the collection of analysis data, deep learning was used in the integrated search on the Academic Research Information Service (www.riss.kr) to search for "CSR", "CSV" and "ESG" as search terms, and the Korean abstracts and keyword were scrapped out of the extracted paper and they are organize into EXCEL. For the final step, CSR 2,847 papers, CSV 395 papers, ESG 555 papers derived were analyzed using the Rx64 4.0.2 program and Rstudio using text mining, one of the big data analysis techniques, and Word Cloud for visualization. Results: The results of this study are as follows; CSR, CSV, and ESG studies showed that research slowed down somewhat before 2010, but research increased rapidly until recently in 2019. Research have been found to be heavily researched in the fields of social science, art and physical education, and engineering. As a result of the study, there were many keyword of 'corporate', 'social', and 'responsibility', which were similar in the word cloud analysis. Looking at the frequent keyword and word cloud analysis by field and year, overall keyword were derived similar to all keyword by year. However, some differences appeared in each field. Conclusion: Government support and expert support for CSR, CSV and ESG should be activated, and researches on technology-based strategies are needed. In the future, it is necessary to take various approaches to them. If researches are conducted in consideration of the environment or energy, it is judged that bigger implications can be presented.