• Title/Summary/Keyword: Visual Localization

Search Result 144, Processing Time 0.023 seconds

Visual Positioning System based on Voxel Labeling using Object Simultaneous Localization And Mapping

  • Jung, Tae-Won;Kim, In-Seon;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.302-306
    • /
    • 2021
  • Indoor localization is one of the basic elements of Location-Based Service, such as indoor navigation, location-based precision marketing, spatial recognition of robotics, augmented reality, and mixed reality. We propose a Voxel Labeling-based visual positioning system using object simultaneous localization and mapping (SLAM). Our method is a method of determining a location through single image 3D cuboid object detection and object SLAM for indoor navigation, then mapping to create an indoor map, addressing it with voxels, and matching with a defined space. First, high-quality cuboids are created from sampling 2D bounding boxes and vanishing points for single image object detection. And after jointly optimizing the poses of cameras, objects, and points, it is a Visual Positioning System (VPS) through matching with the pose information of the object in the voxel database. Our method provided the spatial information needed to the user with improved location accuracy and direction estimation.

Localization of AUV Using Visual Shape Information of Underwater Structures (수중 구조물 형상의 영상 정보를 이용한 수중로봇 위치인식 기법)

  • Jung, Jongdae;Choi, Suyoung;Choi, Hyun-Taek;Myung, Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.392-397
    • /
    • 2015
  • An autonomous underwater vehicle (AUV) can perform flexible operations even in complex underwater environments because of its autonomy. Localization is one of the key components of this autonomous navigation. Because the inertial navigation system of an AUV suffers from drift, observing fixed objects in an inertial reference system can enhance the localization performance. In this paper, we propose a method of AUV localization using visual measurements of underwater structures. A camera measurement model that emulates the camera’s observations of underwater structures is designed in a particle filtering framework. Then, the particle weight is updated based on the extracted visual information of the underwater structures. The proposed method is validated based on the results of experiments performed in a structured basin environment.

Audio-visual Spatial Coherence Judgments in the Peripheral Visual Fields

  • Lee, Chai-Bong;Kang, Dae-Gee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.35-39
    • /
    • 2015
  • Auditory and visual stimuli presented in the peripheral visual field were perceived as spatially coincident when the auditory stimulus was presented five to seven degrees outwards from the direction of the visual stimulus. Furthermore, judgments of the perceived distance between auditory and visual stimuli presented in the periphery did not increase when an auditory stimulus was presented in the peripheral side of the visual stimulus. As to the origin of this phenomenon, there would seem to be two possibilities. One is that the participants could not perceptually distinguish the distance on the peripheral side because of the limitation of accuracy perception. The other is that the participants could distinguish the distances, but could not evaluate them because of the insufficient experimental setup of auditory stimuli. In order to confirm which of these two alternative explanations is valid, we conducted an experiment similar to that of our previous study using a sufficient number of loudspeakers for the presentation of auditory stimuli. Results revealed that judgments of perceived distance increased on the peripheral side. This indicates that we can perceive discrimination between audio and visual stimuli on the peripheral side.

Implementation of Sound Source Localization Based on Audio-visual Information for Humanoid Robots (휴모노이드 로봇을 위한 시청각 정보 기반 음원 정위 시스템 구현)

  • Park, Jeong-Ok;Na, Seung-You;Kim, Jin-Young
    • Speech Sciences
    • /
    • v.11 no.4
    • /
    • pp.29-42
    • /
    • 2004
  • This paper presents an implementation of real-time speaker localization using audio-visual information. Four channels of microphone signals are processed to detect vertical as well as horizontal speaker positions. At first short-time average magnitude difference function(AMDF) signals are used to determine whether the microphone signals are human voices or not. And then the orientation and distance information of the sound sources can be obtained through interaural time difference. Finally visual information by a camera helps get finer tuning of the angles to speaker. Experimental results of the real-time localization system show that the performance improves to 99.6% compared to the rate of 88.8% when only the audio information is used.

  • PDF

Human-Robot Interaction in Real Environments by Audio-Visual Integration

  • Kim, Hyun-Don;Choi, Jong-Suk;Kim, Mun-Sang
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.61-69
    • /
    • 2007
  • In this paper, we developed not only a reliable sound localization system including a VAD(Voice Activity Detection) component using three microphones but also a face tracking system using a vision camera. Moreover, we proposed a way to integrate three systems in the human-robot interaction to compensate errors in the localization of a speaker and to reject unnecessary speech or noise signals entering from undesired directions effectively. For the purpose of verifying our system's performances, we installed the proposed audio-visual system in a prototype robot, called IROBAA(Intelligent ROBot for Active Audition), and demonstrated how to integrate the audio-visual system.

Loosely Coupled LiDAR-visual Mapping and Navigation of AMR in Logistic Environments (실내 물류 환경에서 라이다-카메라 약결합 기반 맵핑 및 위치인식과 네비게이션 방법)

  • Choi, Byunghee;Kang, Gyeongsu;Roh, Yejin;Cho, Younggun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.397-406
    • /
    • 2022
  • This paper presents an autonomous mobile robot (AMR) system and operation algorithms for logistic and factory facilities without magnet-lines installation. Unlike widely used AMR systems, we propose an EKF-based loosely coupled fusion of LiDAR measurements and visual markers. Our method first constructs occupancy grid and visual marker map in the mapping process and utilizes prebuilt maps for precise localization. Also, we developed a waypoint-based navigation pipeline for robust autonomous operation in unconstrained environments. The proposed system estimates the robot pose using by updating the state with the fusion of visual marker and LiDAR measurements. Finally, we tested the proposed method in indoor environments and existing factory facilities for evaluation. In experimental results, this paper represents the performance of our system compared to the well-known LiDAR-based localization and navigation system.

An Approach for Localization Around Indoor Corridors Based on Visual Attention Model (시각주의 모델을 적용한 실내 복도에서의 위치인식 기법)

  • Yoon, Kook-Yeol;Choi, Sun-Wook;Lee, Chong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.93-101
    • /
    • 2011
  • For mobile robot, recognizing its current location is very important to navigate autonomously. Especially, loop closing detection that robot recognize location where it has visited before is a kernel problem to solve localization. A considerable amount of research has been conducted on loop closing detection and localization based on appearance because vision sensor has an advantage in terms of costs and various approaching methods to solve this problem. In case of scenes that consist of repeated structures like in corridors, perceptual aliasing in which, the two different locations are recognized as the same, occurs frequently. In this paper, we propose an improved method to recognize location in the scenes which have similar structures. We extracted salient regions from images using visual attention model and calculated weights using distinctive features in the salient region. It makes possible to emphasize unique features in the scene to classify similar-looking locations. In the results of corridor recognition experiments, proposed method showed improved recognition performance. It shows 78.2% in the accuracy of single floor corridor recognition and 71.5% for multi floor corridors recognition.

Survey on Visual Navigation Technology for Unmanned Systems (무인 시스템의 자율 주행을 위한 영상기반 항법기술 동향)

  • Kim, Hyoun-Jin;Seo, Hoseong;Kim, Pyojin;Lee, Chung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.133-139
    • /
    • 2015
  • This paper surveys vision based autonomous navigation technologies for unmanned systems. Main branches of visual navigation technologies are visual servoing, visual odometry, and visual simultaneous localization and mapping (SLAM). Visual servoing provides velocity input which guides mobile system to desired pose. This input velocity is calculated from feature difference between desired image and acquired image. Visual odometry is the technology that estimates the relative pose between frames of consecutive image. This can improve the accuracy when compared with the exisiting dead-reckoning methods. Visual SLAM aims for constructing map of unknown environment and determining mobile system's location simultaneously, which is essential for operation of unmanned systems in unknown environments. The trend of visual navigation is grasped by examining foreign research cases related to visual navigation technology.

Visual SLAM using Local Bundle Optimization in Unstructured Seafloor Environment (국소 집단 최적화 기법을 적용한 비정형 해저면 환경에서의 비주얼 SLAM)

  • Hong, Seonghun;Kim, Jinwhan
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.197-205
    • /
    • 2014
  • As computer vision algorithms are developed on a continuous basis, the visual information from vision sensors has been widely used in the context of simultaneous localization and mapping (SLAM), called visual SLAM, which utilizes relative motion information between images. This research addresses a visual SLAM framework for online localization and mapping in an unstructured seabed environment that can be applied to a low-cost unmanned underwater vehicle equipped with a single monocular camera as a major measurement sensor. Typically, an image motion model with a predefined dimensionality can be corrupted by errors due to the violation of the model assumptions, which may lead to performance degradation of the visual SLAM estimation. To deal with the erroneous image motion model, this study employs a local bundle optimization (LBO) scheme when a closed loop is detected. The results of comparison between visual SLAM estimation with LBO and the other case are presented to validate the effectiveness of the proposed methodology.

Topological Localization of Mobile Robots in Real Indoor Environment (실제 실내 환경에서 이동로봇의 위상학적 위치 추정)

  • Park, Young-Bin;Suh, Il-Hong;Choi, Byung-Uk
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • One of the main problems of topological localization in a real indoor environment is variations in the environment caused by dynamic objects and changes in illumination. Another problem arises from the sense of topological localization itself. Thus, a robot must be able to recognize observations at slightly different positions and angles within a certain topological location as identical in terms of topological localization. In this paper, a possible solution to these problems is addressed in the domain of global topological localization for mobile robots, in which environments are represented by their visual appearance. Our approach is formulated on the basis of a probabilistic model called the Bayes filter. Here, marginalization of dynamics in the environment, marginalization of viewpoint changes in a topological location, and fusion of multiple visual features are employed to measure observations reliably, and action-based view transition model and action-associated topological map are used to predict the next state. We performed experiments to demonstrate the validity of our proposed approach among several standard approaches in the field of topological localization. The results clearly demonstrated the value of our approach.

  • PDF