• Title/Summary/Keyword: Visual Compensation

Search Result 113, Processing Time 0.026 seconds

An Automatic Visual Alignment System for an Exposure System (노광시스템을 위한 자동 정렬 비젼시스템)

  • Cho, Tai-Hoon;Seo, Jae-Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.43-48
    • /
    • 2007
  • For exposure systems, very accurate alignment between the mask and the substrate is indispensable. In this paper, an automatic alignment system using machine vision for exposure systems is described. Machine vision algorithms are described in detail including extraction of an alignment mark's center position and camera calibration. Methods for extracting parameters for alignment are also presented with some compensation techniques to reduce alignment time. Our alignment system was implemented with a vision system and motion control stages. The performance of the alignment system has been extensively tested with satisfactory results. The performance evaluation shows alignment accuracy of lum within total alignment time of about $2{\sim}3$ seconds including stage moving time.

  • PDF

Cognitive neuropsychological assesment in pure alexic patient with letter-by-letter reading using fMRl - Single case study - (주변성 난독증의 특성과 대뇌활성화 양상 - 단일사례연구 -)

  • Sohn, Hyo-Jeong;Pyun, Sung-Bom;Kim, Chung-Myung;Nam, Ki-Chun
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.137-140
    • /
    • 2005
  • In this study we investigated the cognitive neuropsychological characteristics and the underlying mechanism in a letter-by-letter reading dyslexic patient after cerebral infarct of left posterior cerebral artery using fMRl, The results of cognitive neuropsychological assesment are visual perception was appropriate, and semantic categorization, picture naming and picture-word matching tasks were above83% correct, respectively. However, she was very poor in lexical decision task. The selective reading impairment is thought to result from the disruption of the left occipitotemporal region included fusiform gyrus. In fMRl results, the activation level increase din the right occipitotemporal region included fusiform gyrus compared with normal group in compensation for left impairment and more increased in pseudo word reading task than word reading on account of familiarity.

  • PDF

Tilt Angle Measurement Based on Arrayed Eddy Current Sensors

  • Chao, Xuewei;Li, Yang;Nie, Jing
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.524-528
    • /
    • 2016
  • Eddy current (EC) sensor works based on the electromagnetic induction principle and has been widely applied in the industrial testing and evaluation due to its robustness and environmental adaptability. Meanwhile, tilt angle measurement is mainly based on the laser or visual method, which is strict with the measurement environment and not suitable for the industrial applications. In this paper, a novel tilt angle measurement method based on arrayed EC sensors is proposed. Both the simulation and experiments indicate that the measured error is approximately linear with tilt angle and the accuracy after compensation is $0.25^{\circ}$. In conclusion, this research cannot only broaden the scope of EC application, but also overcome the shortcomings of existing angle measurement methods.

Colour Linear Array Image Enhancement Method with Constant Colour

  • Ji, Jing;Fang, Suping;Cheng, Zhiqiang
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.304-312
    • /
    • 2022
  • Digital images of cultural relics captured using line scan cameras present limitations due to uneven intensity and low contrast. To address this issue, this report proposes a colour linear array image enhancement method that can maintain a constant colour. First, the colour linear array image is converted from the red-green-blue (RGB) colour space into the hue-saturation-intensity colour space, and the three components of hue, saturation, and intensity are separated. Subsequently, the hue and saturation components are held constant while the intensity component is processed using the established intensity compensation model to eliminate the uneven intensity of the image. On this basis, the contrast of the intensity component is enhanced using an improved local contrast enhancement method. Finally, the processed image is converted into the RGB colour space. The experimental results indicate that the proposed method can significantly improve the visual effect of colour linear array images. Moreover, the objective quality evaluation parameters are improved compared to those determined using existing methods.

An Algorithm for the Multi-view Image Improvement with the Resteicted Number of Images in Texture Extraction (텍스쳐 추출시 제한된 수의 참여 영상을 이용한 Multi-view 영상 개선 알고리듬)

  • 김도현;양영일
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.1
    • /
    • pp.34-40
    • /
    • 2000
  • '[n this paper, we propose an efficient multi-view image coding algorithm which finds the optimal texture from a restricted number of multi-view image. The X-Y plane of the normalized object space is divided into the triangular patches. The depth of each node is determined by appling a block based disparity compensation method. Thereafter the texture of each patch is extracted by appling an affine transformation based disparity compensation method to the multi-view images. We reduced the number of images needed to determine the texture compared to traditional methods which use all the multi-view image in the texture extraction. The experimental results show that the SNR of images encoded by the proposed algorithm is better than that of images encoded by the traditional method by the approximately 0.2dB for the test sets of multi -view image called dragon, santa, city and kid. Image data recovered after encoding by the proposed method show a better visual results than after using traditional method.

  • PDF

Effect of a Workplace-Based Work-Conditioning Program on Management of Work-Related Musculoskeletal Disorders

  • Lee, Won-Hwee;Ha, Sung-Min;Kim, Su-Jung;Park, Kyue-Nam;Cheong, Sung-Dae;Kim, Si-Hyun;Weon, Jong-Hyuck;Cynn, Heon-Seock;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.17 no.4
    • /
    • pp.61-68
    • /
    • 2010
  • The purpose of this study was to investigate the effects of a workplace-based work-conditioning program (WCP) on the management of work-related musculoskeletal disorders (WRMDs) in an automobile-parts manufacturing company. In total, 1,110 subjects with WRMDs participated in workplace-based WCP emphasizing function-centered management and ergonomics. We investigated the incidence of WRMDs variables (number of persons diagnosed with industrial accident-related WHMDs, number of cases of WRMD) and financial benefits (cost of workers' compensation insurance and lost work days related to WRMDs) per year before and after WCP. Additionally, we compared self-reported pain intensity and functional disability in subjects with musculoskeletal pain before and after the WCP. Pain intensity was measured using a visual analog scale (VAS), and functional disability was measured by the neck disability index (NDI) and the Oswestry disability Index (ODI). The number of person diagnosed with industrial accident-related WRMDs, the number of cases of WRMD, the cost of workers' compensation insurance and lost work days related to WRMDs per year decreased by 51%, 37%, 34%, and 47%, respectively, and VAS, NDI, and ODI scores decreased significantly after implementation of WCP (p<.05). Thus, the results of the present study suggest that function-centered, workplace-based WCP was effective in managing WRMDs at an automobile-parts manufacturing company.

A Study on Frame Interpolation and Nonlinear Moving Vector Estimation Using GRNN (GRNN 알고리즘을 이용한 비선형적 움직임 벡터 추정 및 프레임 보간연구)

  • Lee, Seung-Joo;Bang, Min-Suk;Yun, Kee-Bang;Kim, Ki-Doo
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.459-468
    • /
    • 2013
  • Under nonlinear characteristics of frames, we propose the frame interpolation using GRNN to enhance the visual picture quality. By full search with block size of 128x128~1x1 to reduce blocky artifact and image overlay, we select the frame having block of minimum error and re-estimate the nonlinear moving vector using GRNN. We compare our scheme with forward(backward) motion compensation, bidirectional motion compensation when the object movement is large or the object image includes zoom-in and zoom-out or camera focus has changed. Experimental results show that the proposed method provides better performance in subjective image quality compared to conventional MCFI methods.

Efficient Rate Control by Lagrange Multiplier Using Adaptive Mode Selection in Video Coding (비디오 코팅시 Lagrage 승수를 조정하여 적응 모드 선택에 따른 비트율의 제어)

  • Ryu, Chul;Kim, Seung P.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.77-88
    • /
    • 2000
  • This paper presents an approach for rate control by adaptively selecting macroblock modes in video coding.The problem of rate control has been investigated by many authors where quantizer level is adjustedbased on the buffer fullness. The proposed approach is different fron the previous ones [4] id that it finds the optimal decision curve rather than finding a set of the modes. Proposed algorithm extends the coding decision options for rate control to motion/no-motion compensation as well as inter/intra decisions. Instead of having a fixed motion/no-notion compensation or inter/intra decision curve, one can utilize an adaptive decision curvebased on the characteristics of input frames so that the PSNR at a given bit rate is maximized. Therefore, the proposed approach provides better rate control than simple quantizer feedback approach interns of visual quality. The curve is obtained by utilizing simulated annealing optimization technique. Thealgorithm is implemented and simulations are compared with other approaches within H.261 video codec.

  • PDF

Fast Reference Frame Selection Algorithm Based on Motion Vector Reference Map (움직임 벡터 참조 지도 기반의 고속 참조 영상 선택 방법)

  • Lee, Kyung-Hee;Ko, Man-Geun;Seo, Bo-Seok;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.28-35
    • /
    • 2010
  • The variable block size motion estimation (ME) and compensation (MC) using multiple reference frames is adopted in H.264/AVC to improve coding efficiency. However, the computational complexity for ME/MC increases proportional to the number of reference frames and variable blocks. In this paper, we propose a new efficient reference frame selection algorithm to reduce the complexity while keeping the visual quality. First, a motion vector reference map is constructed by SAD of $4{\times}4$ block unit for multi reference frames. Next, the variable block size motion estimation and motion compensation is performed according to the motion vector reference map. The computer simulation results show that the average loss of BDPSNR is -0.01dB, the increment of BDBR is 0.27%, and the encoding time is reduced by 38% compared with the original method for H.264/AVC.

Computer Vision Based Measurement, Error Analysis and Calibration (컴퓨터 시각(視覺)에 의거한 측정기술(測定技術) 및 측정오차(測定誤差)의 분석(分析)과 보정(補正))

  • Hwang, H.;Lee, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.65-78
    • /
    • 1992
  • When using a computer vision system for a measurement, the geometrically distorted input image usually restricts the site and size of the measuring window. A geometrically distorted image caused by the image sensing and processing hardware degrades the accuracy of the visual measurement and prohibits the arbitrary selection of the measuring scope. Therefore, an image calibration is inevitable to improve the measuring accuracy. A calibration process is usually done via four steps such as measurement, modeling, parameter estimation, and compensation. In this paper, the efficient error calibration technique of a geometrically distorted input image was developed using a neural network. After calibrating a unit pixel, the distorted image was compensated by training CMLAN(Cerebellar Model Linear Associator Network) without modeling the behavior of any system element. The input/output training pairs for the network was obtained by processing the image of the devised sampled pattern. The generalization property of the network successfully compensates the distortion errors of the untrained arbitrary pixel points on the image space. The error convergence of the trained network with respect to the network control parameters were also presented. The compensated image through the network was then post processed using a simple DDA(Digital Differential Analyzer) to avoid the pixel disconnectivity. The compensation effect was verified using known sized geometric primitives. A way to extract directly a real scaled geometric quantity of the object from the 8-directional chain coding was also devised and coded. Since the developed calibration algorithm does not require any knowledge of modeling system elements and estimating parameters, it can be applied simply to any image processing system. Furthermore, it efficiently enhances the measurement accuracy and allows the arbitrary sizing and locating of the measuring window. The applied and developed algorithms were coded as a menu driven way using MS-C language Ver. 6.0, PC VISION PLUS library functions, and VGA graphic functions.

  • PDF