• Title/Summary/Keyword: Visual Alignment System

Search Result 31, Processing Time 0.039 seconds

A Study on the Improvement of Vibration Analysis of Visual Alignment System Using CAE Method (CAE를 이용한 Visual Alignment System의 진동해석 연구)

  • Lee, Seung-Yoon;Kim, Sung-Rae;Jeong, Jay-I.;Yim, Hong-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.838-842
    • /
    • 2009
  • Vibrational analysis is presented for a visual alignment system of nano-imprint process in this study. For a nano-imprinting equipment, the visual alignment system is one of the essential parts in order to align the mold into the target panel. For the precision alignment, the vibration from inside and outside of the vision system should be avoided, and the elimination of the vibration should be considered in the design process of the visual alignment design. In this work, vibrational characteristics for the vision system frame is analyzed and topology optimization of a frame section area is carried out. With the results of the analysis, a new frame design are suggested. Design consideration for constructing a visual alignment system in view of optimal design is also discussed.

On the Development of a Spatial Hybrid Visual Alignment System (3차원 하이브리드 비전 정렬 시스템에 관한 연구)

  • Hwang, Jae-Woong;Kwon, Sang-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.79-87
    • /
    • 2011
  • In this paper, suggested is a hybrid-type visual alignment system to align mask and panel in 3-D space, where mask and panel are to be controlled independently by two individual positioning mechanisms in order to compensate for spatial misalignments. In the hybrid visual alignment system, the below 4-PPR parallel mechanism provides in-plain motions to pattern mask like the other conventional alignment systems while the above 4-RPS parallel mechanism is to move glass panel to achieve a complete spatial alignment. For the control of the hybrid alignment system, first, inverse kinematic solutions for the parallel mechanisms are given to determine the driving distance of each active joint, and also an efficient way to determine the spatial alignment error is developed by exploiting three in-plane cameras.

Fast and Fine Control of a Visual Alignment Systems Based on the Misalignment Estimation Filter (정렬오차 추정 필터에 기반한 비전 정렬 시스템의 고속 정밀제어)

  • Jeong, Hae-Min;Hwang, Jae-Woong;Kwon, Sang-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1233-1240
    • /
    • 2010
  • In the flat panel display and semiconductor industries, the visual alignment system is considered as a core technology which determines the productivity of a manufacturing line. It consists of the vision system to extract the centroids of alignment marks and the stage control system to compensate the alignment error. In this paper, we develop a Kalman filter algorithm to estimate the alignment mark postures and propose a coarse-fine alignment control method which utilizes both original fine images and reduced coarse ones in the visual feedback. The error compensation trajectory for the distributed joint servos of the alignment stage is generated in terms of the inverse kinematic solution for the misalignment in task space. In constructing the estimation algorithm, the equation of motion for the alignment marks is given by using the forward kinematics of alignment stage. Secondly, the measurements for the alignment mark centroids are obtained from the reduced images by applying the geometric template matching. As a result, the proposed Kalman filter based coarse-fine alignment control method enables a considerable reduction of alignment time.

Kinematics and Control of a Visual Alignment System for Flat Panel Displays (평판 디스플레이 비전 정렬 시스템의 기구학 및 제어)

  • Kwon, Sang-Joo;Park, Chan-Sik;Lee, Sang-Moo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.369-375
    • /
    • 2008
  • The kinematics and control problem of a visual alignment system is investigated, which plays a crucial role in the fabrication process of flat panel displays. The first solution is the inverse kinematics of a 4PPR parallel alignment mechanism. It determines the driving distance of each joint to compensate the misalignment between mask and panel. Second, an efficient vision algorithm for fast alignment mark recognition is suggested, where by extracting essential feature points to represent the geometry of a mark, the geometric template matching enables much faster object recognition comparing with the general template matching. Finally, the overall visual alignment process including the kinematic solution, vision algorithm, and joint control is implemented and experimental results are given.

Development of a Fast Alignment Method of Micro-Optic Parts Using Multi Dimension Vision and Optical Feedback

  • Han, Seung-Hyun;Kim, Jin-Oh;Park, Joong-Wan;Kim, Jong-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.273-277
    • /
    • 2003
  • A general process of electronic assembly is composed of a series of geometric alignments and bonding/screwing processes. After assembly, the function is tested in a following process of inspection. However, assembly of micro-optic devices requires both processes to be performed in equipment. Coarse geometric alignment is made by using vision and optical function is improved by the following fine motion based on feedback of tunable laser interferometer. The general system is composed of a precision robot system for 3D assembly, a 3D vision guided system for geometric alignment and an optical feedback system with a tunable laser. In this study, we propose a new fast alignment algorithm of micro-optic devices for both of visual and optical alignments. The main goal is to find a fastest alignment process and algorithms with state-of-the-art technology. We propose a new approach with an optimal sequence of processes, a visual alignment algorithm and a search algorithm for an optimal optical alignment. A system is designed to show the effectiveness and efficiency of the proposed method.

  • PDF

An Automatic Visual Alignment System for an Exposure System (노광시스템을 위한 자동 정렬 비젼시스템)

  • Cho, Tai-Hoon;Seo, Jae-Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.43-48
    • /
    • 2007
  • For exposure systems, very accurate alignment between the mask and the substrate is indispensable. In this paper, an automatic alignment system using machine vision for exposure systems is described. Machine vision algorithms are described in detail including extraction of an alignment mark's center position and camera calibration. Methods for extracting parameters for alignment are also presented with some compensation techniques to reduce alignment time. Our alignment system was implemented with a vision system and motion control stages. The performance of the alignment system has been extensively tested with satisfactory results. The performance evaluation shows alignment accuracy of lum within total alignment time of about $2{\sim}3$ seconds including stage moving time.

  • PDF

Mask-Panel Alignment Robot System Using a Parallel Mechanism with Actuation Redundancy (여유 구동 병렬기구를 이용한 마스크-패널 얼라인 로붓 시스템)

  • Jeong, Hae-Min;Kwon, Sang-Joo;Lee, Sang-Moo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.887-893
    • /
    • 2009
  • In this paper, a mask-panel alignment robot system is considered for IT industry applications. Two kinds of solutions are suggested which are required in constructing a control system for the alignment robot with actuation redundancy. First, the kinematic solution for the 4PPR parallel positioning mechanism is formulated for an arbitrary initial posture, which relates the mask-panel misalignment in the task space and the desired actuator displacements in the joint space. Secondly, in order to increase the stiffness of the control motion and also to avoid the mechanical lock which may happen due to the redundant actuation, a new synchronous control method is proposed which has the merit of coordinating joint control motions while not losing individual joint control performance. In addition, the engineering process to develop a visual alignment robot system is described with the results of experimental setup and GUI software. Finally, the experimental results demonstrate the effectiveness of the proposed alignment system control methodology and how much beneficial it will be in real industrial applications.

Controlling robot by image-based visual servoing with stereo cameras

  • Fan, Jun-Min;Won, Sang-Chul
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.229-232
    • /
    • 2005
  • In this paper, an image-based "approach-align -grasp" visual servo control design is proposed for the problem of object grasping, which is based on the binocular stand-alone system. The basic idea consists of considering a vision system as a specific sensor dedicated a task and included in a control servo loop, and we perform automatic grasping follows the classical approach of splitting the task into preparation and execution stages. During the execution stage, once the image-based control modeling is established, the control task can be performed automatically. The proposed visual servoing control scheme ensures the convergence of the image-features to desired trajectories by using the Jacobian matrix, which is proved by the Lyapunov stability theory. And we also stress the importance of projective invariant object/gripper alignment. The alignment between two solids in 3-D projective space can be represented with view-invariant, more precisely; it can be easily mapped into an image set-point without any knowledge about the camera parameters. The main feature of this method is that the accuracy associated with the task to be performed is not affected by discrepancies between the Euclidean setups at preparation and at task execution stages. Then according to the projective alignment, the set point can be computed. The robot gripper will move to the desired position with the image-based control law. In this paper we adopt a constant Jacobian online. Such method describe herein integrate vision system, robotics and automatic control to achieve its goal, it overcomes disadvantages of discrepancies between the different Euclidean setups and proposes control law in binocular-stand vision case. The experimental simulation shows that such image-based approach is effective in performing the precise alignment between the robot end-effector and the object.

  • PDF

The Effect of Visual Cue Deprivation for the Head Alignment on Unilateral Neglect Patient: Case Report (편측 무시 환자에서 시각 정보 차단이 머리 위치 정렬에 미치는 영향: 사례 연구)

  • Chang, Jong-Sung;Park, Jung-Mi;Lee, Mi-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.3
    • /
    • pp.337-342
    • /
    • 2013
  • PURPOSE: The Unilateral neglect is characterized by difficulty shifting attention to the side of space opposite the brain lesion and frequently reducing use of contralesional extremities. This study was to identify whether the visual deprivation was responsible for head position on unilateral neglect patient after stroke. METHODS: A patient with left middle cerebral artery infarction participated in the study. We assessed neglect using line bisection and star cancellation test. Patient was instructed to maintain correct alignment of trunk and head in a sit position. We evaluated degree of head lateral tilting and rotation. Then, patient was blocked visual input. Also, we evaluated head position in the same way. RESULTS: He scored 3 points in the line bisection test and 9 points star cancellation test. In postural evaluation, he had deviated posture such as lateral head tilting and rotation. After visual cue deprivation, patient showed different head position which was decreased degree of head tilting and rotation. CONCLUSION: For vertical body orientation, it was used multiple sensory references including the vestibular, somatosensory, and visual system. This finding suggested that abnormal posture of neglect patient could be related to the visual input. It has important clinical implications in terms of understanding the neglect.