• 제목/요약/키워드: Vision based Monitoring System

검색결과 149건 처리시간 0.022초

아파트 건설 현장 작업자 특징 추출 및 다중 객체 추적 방법 제안 (A Suggestion for Worker Feature Extraction and Multiple-Object Tracking Method in Apartment Construction Sites)

  • 강경수;조영운;류한국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.40-41
    • /
    • 2021
  • The construction industry has the highest occupational accidents/injuries among all industries. Korean government installed surveillance camera systems at construction sites to reduce occupational accident rates. Construction safety managers are monitoring potential hazards at the sites through surveillance system; however, the human capability of monitoring surveillance system with their own eyes has critical issues. Therefore, this study proposed to build a deep learning-based safety monitoring system that can obtain information on the recognition, location, identification of workers and heavy equipment in the construction sites by applying multiple-object tracking with instance segmentation. To evaluate the system's performance, we utilized the MS COCO and MOT challenge metrics. These results present that it is optimal for efficiently automating monitoring surveillance system task at construction sites.

  • PDF

Development and testing of a composite system for bridge health monitoring utilising computer vision and deep learning

  • Lydon, Darragh;Taylor, S.E.;Lydon, Myra;Martinez del Rincon, Jesus;Hester, David
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.723-732
    • /
    • 2019
  • Globally road transport networks are subjected to continuous levels of stress from increasing loading and environmental effects. As the most popular mean of transport in the UK the condition of this civil infrastructure is a key indicator of economic growth and productivity. Structural Health Monitoring (SHM) systems can provide a valuable insight to the true condition of our aging infrastructure. In particular, monitoring of the displacement of a bridge structure under live loading can provide an accurate descriptor of bridge condition. In the past B-WIM systems have been used to collect traffic data and hence provide an indicator of bridge condition, however the use of such systems can be restricted by bridge type, assess issues and cost limitations. This research provides a non-contact low cost AI based solution for vehicle classification and associated bridge displacement using computer vision methods. Convolutional neural networks (CNNs) have been adapted to develop the QUBYOLO vehicle classification method from recorded traffic images. This vehicle classification was then accurately related to the corresponding bridge response obtained under live loading using non-contact methods. The successful identification of multiple vehicle types during field testing has shown that QUBYOLO is suitable for the fine-grained vehicle classification required to identify applied load to a bridge structure. The process of displacement analysis and vehicle classification for the purposes of load identification which was used in this research adds to the body of knowledge on the monitoring of existing bridge structures, particularly long span bridges, and establishes the significant potential of computer vision and Deep Learning to provide dependable results on the real response of our infrastructure to existing and potential increased loading.

센서 구성을 고려한 비전 기반 차선 감지 시스템 개발 (Development of A Vision-based Lane Detection System with Considering Sensor Configuration Aspect)

  • 박재학;홍대건;허건수;박장현;조동일
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.97-104
    • /
    • 2005
  • Vision-based lane sensing systems require accurate and robust sensing performance in lane detection. Besides, there exists trade-off between the computational burden and processor cost, which should be considered for implementing the systems in passenger cars. In this paper, a stereo vision-based lane detection system is developed with considering sensor configuration aspects. An inverse perspective mapping method is formulated based on the relative correspondence between the left and right cameras so that the 3-dimensional road geometry can be reconstructed in a robust manner. A new monitoring model for estimating the road geometry parameters is constructed to reduce the number of the measured signals. The selection of the sensor configuration and specifications is investigated by utilizing the characteristics of standard highways. Based on the sensor configurations, it is shown that appropriate sensing region on the camera image coordinate can be determined. The proposed system is implemented on a passenger car and verified experimentally.

Mean-Shift Blob Clustering and Tracking for Traffic Monitoring System

  • Choi, Jae-Young;Yang, Young-Kyu
    • 대한원격탐사학회지
    • /
    • 제24권3호
    • /
    • pp.235-243
    • /
    • 2008
  • Object tracking is a common vision task to detect and trace objects between consecutive frames. It is also important for a variety of applications such as surveillance, video based traffic monitoring system, and so on. An efficient moving vehicle clustering and tracking algorithm suitable for traffic monitoring system is proposed in this paper. First, automatic background extraction method is used to get a reliable background as a reference. The moving blob(object) is then separated from the background by mean shift method. Second, the scale invariant feature based method extracts the salient features from the clustered foreground blob. It is robust to change the illumination, scale, and affine shape. The simulation results on various road situations demonstrate good performance achieved by proposed method.

머신 비전을 이용한 금형 품질 검사 시스템 개발 (Development of Stamping Die Quality Inspection System Using Machine Vision)

  • 윤협상
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.181-189
    • /
    • 2023
  • In this paper, we present a case study of developing MVIS (Machine Vision Inspection System) designed for exterior quality inspection of stamping dies used in the production of automotive exterior components in a small to medium-sized factory. While the primary processes within the factory, including machining, transportation, and loading, have been automated using PLCs, CNC machines, and robots, the final quality inspection process still relies on manual labor. We implement the MVIS with general-purpose industrial cameras and Python-based open-source libraries and frameworks for rapid and low-cost development. The MVIS can play a major role on improving throughput and lead time of stamping dies. Furthermore, the processed inspection images can be leveraged for future process monitoring and improvement by applying deep learning techniques.

Computer vision-based remote displacement monitoring system for in-situ bridge bearings robust to large displacement induced by temperature change

  • Kim, Byunghyun;Lee, Junhwa;Sim, Sung-Han;Cho, Soojin;Park, Byung Ho
    • Smart Structures and Systems
    • /
    • 제30권5호
    • /
    • pp.521-535
    • /
    • 2022
  • Efficient management of deteriorating civil infrastructure is one of the most important research topics in many developed countries. In particular, the remote displacement measurement of bridges using linear variable differential transformers, global positioning systems, laser Doppler vibrometers, and computer vision technologies has been attempted extensively. This paper proposes a remote displacement measurement system using closed-circuit televisions (CCTVs) and a computer-vision-based method for in-situ bridge bearings having relatively large displacement due to temperature change in long term. The hardware of the system is composed of a reference target for displacement measurement, a CCTV to capture target images, a gateway to transmit images via a mobile network, and a central server to store and process transmitted images. The usage of CCTV capable of night vision capture and wireless data communication enable long-term 24-hour monitoring on wide range of bridge area. The computer vision algorithm to estimate displacement from the images involves image preprocessing for enhancing the circular features of the target, circular Hough transformation for detecting circles on the target in the whole field-of-view (FOV), and homography transformation for converting the movement of the target in the images into an actual expansion displacement. The simple target design and robust circle detection algorithm help to measure displacement using target images where the targets are far apart from each other. The proposed system is installed at the Tancheon Overpass located in Seoul, and field experiments are performed to evaluate the accuracy of circle detection and displacement measurements. The circle detection accuracy is evaluated using 28,542 images captured from 71 CCTVs installed at the testbed, and only 48 images (0.168%) fail to detect the circles on the target because of subpar imaging conditions. The accuracy of displacement measurement is evaluated using images captured for 17 days from three CCTVs; the average and root-mean-square errors are 0.10 and 0.131 mm, respectively, compared with a similar displacement measurement. The long-term operation of the system, as evaluated using 8-month data, shows high accuracy and stability of the proposed system.

On low cost model-based monitoring of industrial robotic arms using standard machine vision

  • Karagiannidisa, Aris;Vosniakos, George C.
    • Advances in robotics research
    • /
    • 제1권1호
    • /
    • pp.81-99
    • /
    • 2014
  • This paper contributes towards the development of a computer vision system for telemonitoring of industrial articulated robotic arms. The system aims to provide precision real time measurements of the joint angles by employing low cost cameras and visual markers on the body of the robot. To achieve this, a mathematical model that connects image features and joint angles was developed covering rotation of a single joint whose axis is parallel to the visual projection plane. The feature that is examined during image processing is the varying area of given circular target placed on the body of the robot, as registered by the camera during rotation of the arm. In order to distinguish between rotation directions four targets were used placed every $90^{\circ}$ and observed by two cameras at suitable angular distances. The results were deemed acceptable considering camera cost and lighting conditions of the workspace. A computational error analysis explored how deviations from the ideal camera positions affect the measurements and led to appropriate correction. The method is deemed to be extensible to multiple joint motion of a known kinematic chain.

Recent Advances in Structural Health Monitoring

  • Feng, Maria Q.
    • 비파괴검사학회지
    • /
    • 제27권6호
    • /
    • pp.483-500
    • /
    • 2007
  • Emerging sensor-based structural health monitoring (SHM) technology can play an important role in inspecting and securing the safety of aging civil infrastructure, a worldwide problem. However, implementation of SHM in civil infrastructure faces a significant challenge due to the lack of suitable sensors and reliable methods for interpreting sensor data. This paper reviews recent efforts and advances made in addressing this challenge, with example sensor hardware and software developed in the author's research center. It is proposed to integrate real-time continuous monitoring using on structure sensors for global structural integrity evaluation with targeted NDE inspection for local damage assessment.

Optimization of Finite Element Retina by GA for Plant Growth Neuro Modeling

  • Murase, H.
    • Agricultural and Biosystems Engineering
    • /
    • 제1권1호
    • /
    • pp.22-29
    • /
    • 2000
  • The development of bio-response feedback control system known as the speaking plant approach has been a challenging task for plant production engineers and scientists. In order to achieve the aim of developing such a bio-response feedback control system, the primary concern should be to develop a practical non-invasive technique for monitoring plant growth. Those who are skilled in raising plants can sense whether their plants are under adequate water conditions or not, for example, by merely observing minor color and tone changes before the plants wilt. Consequently, using machine vision, it may be possible to recognize changes in indices that describe plant conditions based on the appearance of growing plants. The interpretation of image information of plants may be based on image features extracted from the original pictorial image. In this study, the performance of a finite element retina was optimized by a genetic algorithm. The optimized finite element retina was evaluated based on the performance of neural plant growth monitor that requires input data given by the finite element retina.

  • PDF

Computer Vision-based Method to Detect Fire Using Color Variation in Temporal Domain

  • Hwang, Ung;Jeong, Jechang;Kim, Jiyeon;Cho, JunSang;Kim, SungHwan
    • Quantitative Bio-Science
    • /
    • 제37권2호
    • /
    • pp.81-89
    • /
    • 2018
  • It is commonplace that high false detection rates interfere with immediate vision-based fire monitoring system. To circumvent this challenge, we propose a fire detection algorithm that can accommodate color variations of RGB in temporal domain, aiming at reducing false detection rates. Despite interrupting images (e.g., background noise and sudden intervention), the proposed method is proved robust in capturing distinguishable features of fire in temporal domain. In numerical studies, we carried out extensive real data experiments related to fire detection using 24 video sequences, implicating that the propose algorithm is found outstanding as an effective decision rule for fire detection (e.g., false detection rate <10%).