• Title/Summary/Keyword: Vision Technique

Search Result 671, Processing Time 0.027 seconds

Robot and vision system interface for material handling on conveyor belt system (컨베이어 벨트 시스템에서의 부품 처리를 위한 로보트와 시각 시스템의 접속)

  • 박태형;박충수;이범희;이상욱;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.608-612
    • /
    • 1990
  • The robot system which can handle a stream of randomly positioned parts on a conveyor belt system, is developed. It is composed of a PUMA 560 robot, a conveyor belt system and a vision system. The performance of the overall system is mainly dependent upon the robot and vision system interface technique. A vision algorithm is developed to determine the position, orientation and type of the part. Calibration procedure and the vision-to-robot transformation are also proposed. Experimental results are then presented and discussed.

  • PDF

The Automated Measurement of Tool Wear using Computer Vision (컴퓨터 비젼에 의한 공구마모의 자동계측)

  • Song, Jun-Yeop;Lee, Jae-Jong;Park, Hwa-Yeong
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.69-79
    • /
    • 1989
  • Cutting tool life monitoring is a critical element needed for designing unmanned machining systems. This paper describes a tool wear measurement system using computer vision which repeatedly measures flank and crater wear of a single point cutting tool. This direct tool wear measurement method is based on an interactive procedure utilizing a image processor and multi-vision sensors. A measurement software calcultes 7 parameters to characterize flank and crater wear. Performance test revealed that the computer vision technique provides precise, absolute tool-wear quantification and reduces human maesurement errors.

  • PDF

A Study on Visual Feedback Control of a Dual Arm Robot with Eight Joints

  • Lee, Woo-Song;Kim, Hong-Rae;Kim, Young-Tae;Jung, Dong-Yean;Han, Sung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.610-615
    • /
    • 2005
  • Visual servoing is the fusion of results from many elemental areas including high-speed image processing, kinematics, dynamics, control theory, and real-time computing. It has much in common with research into active vision and structure from motion, but is quite different from the often described use of vision in hierarchical task-level robot control systems. We present a new approach to visual feedback control using image-based visual servoing with the stereo vision in this paper. In order to control the position and orientation of a robot with respect to an object, a new technique is proposed using a binocular stereo vision. The stereo vision enables us to calculate an exact image Jacobian not only at around a desired location but also at the other locations. The suggested technique can guide a robot manipulator to the desired location without giving such priori knowledge as the relative distance to the desired location or the model of an object even if the initial positioning error is large. This paper describes a model of stereo vision and how to generate feedback commands. The performance of the proposed visual servoing system is illustrated by the simulation and experimental results and compared with the case of conventional method for dual-arm robot made in Samsung Electronics Co., Ltd.

  • PDF

Improving Visual Accessibility for Color Vision Deficiency Based on MPEG-21

  • Yang, Seung-Ji;Ro, Yong-Man;Nam, Je-Ho;Hong, Jin-Woo;Choi, Sang-Yul;Lee, Jin-Hak
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.195-202
    • /
    • 2004
  • In this paper, we propose a visual accessibility technique in an MPEG-21 framework. In particular, MPEG-21 visual accessibility for the colored-visual resource of a digital item is proposed to give better accessibility of color information to people with color vision deficiency (CVD). We propose an adaptation system for CVD as well as a description of CVD in MPEG-21. To verify the usefulness of the proposed method, computer simulations with CVD and color adaptation were performed. Furthermore, a statistical experiment was performed using volunteers with CVD in order to verify the effectiveness of the proposed visual accessibility technique in MPEG-21. Both the experimental and simulation results show that the proposed adaptations technique can provide better color information, particularly to people with CVD.

  • PDF

GPU-Based Optimization of Self-Organizing Map Feature Matching for Real-Time Stereo Vision

  • Sharma, Kajal;Saifullah, Saifullah;Moon, Inkyu
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.128-134
    • /
    • 2014
  • In this paper, we present a graphics processing unit (GPU)-based matching technique for the purpose of fast feature matching between different images. The scale invariant feature transform algorithm developed by Lowe for various feature matching applications, such as stereo vision and object recognition, is computationally intensive. To address this problem, we propose a matching technique optimized for GPUs to perform computations in less time. We optimize GPUs for fast computation of keypoints to make our system quick and efficient. The proposed method uses a self-organizing map feature matching technique to perform efficient matching between the different images. The experiments are performed on various image sets to examine the performance of the system under varying conditions, such as image rotation, scaling, and blurring. The experimental results show that the proposed algorithm outperforms the existing feature matching methods, resulting in fast feature matching due to the optimization of the GPU.

DETECTION AND COUNTING OF FLOWERS BASED ON DIGITAL IMAGES USING COMPUTER VISION AND A CONCAVE POINT DETECTION TECHNIQUE

  • PAN ZHAO;BYEONG-CHUN SHIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.37-55
    • /
    • 2023
  • In this paper we propose a new algorithm for detecting and counting flowers in a complex background based on digital images. The algorithm mainly includes the following parts: edge contour extraction of flowers, edge contour determination of overlapped flowers and flower counting. We use a contour detection technique in Computer Vision (CV) to extract the edge contours of flowers and propose an improved algorithm with a concave point detection technique to find accurate segmentation for overlapped flowers. In this process, we first use the polygon approximation to smooth edge contours and then adopt the second-order central moments to fit ellipse contours to determine whether edge contours overlap. To obtain accurate segmentation points, we calculate the curvature of each pixel point on the edge contours with an improved Curvature Scale Space (CSS) corner detector. Finally, we successively give three adaptive judgment criteria to detect and count flowers accurately and automatically. Both experimental results and the proposed evaluation indicators reveal that the proposed algorithm is more efficient for flower counting.

Real-time Measurement and Analysis for Micro Circular Path of Two-Axes Stage Using Machine Vision (머신 비젼을 이용한 2축 스테이지의 마이크로 원형 궤적 실시간 측정 및 분석)

  • Kim, Ju-Kyung;Park, Jong-Jin;Lee, Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.993-998
    • /
    • 2007
  • To verify the 2D or 3D positioning accuracy of a multi-axes stage is not easy, particularly, in the case the moving path of the stage is not linear. This paper is a study on a measuring method for the curved path accurately. A machine vision technique is used to trace the moving path of two-axes stage. To improve the accuracy of machine vision, a zoom lens is used for the 2D micro moving path. The accuracy of this method depends of the CCD resolution and array align accuracy with the zoom lens system. Also, a further study for software algorithm is required to increase the tracing speed. This technique will be useful to trace a small object in the 2D micro path in real-time accurately.

A Vision-based Damage Detection for Bridge Cables (교량케이블 영상기반 손상탐지)

  • Ho, Hoai-Nam;Lee, Jong-Jae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.39-39
    • /
    • 2011
  • This study presents an effective vision-based system for cable bridge damage detection. In theory, cable bridges need to be inspected the outer as well as the inner part. Starting from August 2010, a new research project supported by Korea Ministry of Land, Transportation Maritime Affairs(MLTM) was initiated focusing on the damage detection of cable system. In this study, only the surface damage detection algorithm based on a vision-based system will be focused on, an overview of the vision-based cable damage detection is given in Fig. 1. Basically, the algorithm combines the image enhancement technique with principal component analysis(PCA) to detect damage on cable surfaces. In more detail, the input image from a camera is processed with image enhancement technique to improve image quality, and then it is projected into PCA sub-space. Finally, the Mahalanobis square distance is used for pattern recognition. The algorithm was verified through laboratory tests on three types of cable surface. The algorithm gave very good results, and the next step of this study is to implement the algorithm for real cable bridges.

  • PDF

Image-Based Visual Servoing Control of a SCARA Robot

  • Han, Sung-Hyun;Lee, Man-Hyung;Hashimoto, Hideki
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.782-788
    • /
    • 2000
  • In this paper, we present a new approach to visual feedback control using image-based visual servoing with stereo vision. In order to control the position and orientation of a robot with respect to an object, a new technique is proposed using binocular stereo vision. The stereo vision enables us to calculate an exact image Jacobian not only around a desired location but also at other locations. The suggested technique can guide a robot manipulator to the desired location without providing a priori knowledge such as the relative distance to the desired location or the model of an object even when the initial positioning error is large. This paper describes a model of stereo vision and how to generate feedback commands. The performance of the proposed visual servoing system is illustrated by experimental results and compared with conventional control methods for an assembly robot.

  • PDF

Six-degree-of-freedom Manipulator Displacement Measurement using Stereo Vision (스테레오비전을 이용한 6자유도 머니퓰레이터 변위 측정)

  • Lee, Dong-Hyeok;Baek, So Young;Cho, Nahm Gyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.191-198
    • /
    • 2015
  • In this paper, six-degree-of-freedom (DoF). Displacement measurement technique using a compact stereo-vision system is proposed. The measuring system consists of a camera, an optical prism, two plane mirrors, and a planar marker on a target. The target was attached on an object so that its six-DoF displacement can be calculated using a proposed coordinates estimating algorithm and stereo images of the marker. A prototype was designed and fabricated for performance test. From the test results, it can be confirmed that the proposed measuring technique can be applied to monitoring and control of various manipulators.