• Title/Summary/Keyword: Vision Technique

Search Result 682, Processing Time 0.028 seconds

Smart monitoring system with multi-criteria decision using a feature based computer vision technique

  • Lin, Chih-Wei;Hsu, Wen-Ko;Chiou, Dung-Jiang;Chen, Cheng-Wu;Chiang, Wei-Ling
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1583-1600
    • /
    • 2015
  • When natural disasters occur, including earthquakes, tsunamis, and debris flows, they are often accompanied by various types of damages such as the collapse of buildings, broken bridges and roads, and the destruction of natural scenery. Natural disaster detection and warning is an important issue which could help to reduce the incidence of serious damage to life and property as well as provide information for search and rescue afterwards. In this study, we propose a novel computer vision technique for debris flow detection which is feature-based that can be used to construct a debris flow event warning system. The landscape is composed of various elements, including trees, rocks, and buildings which are characterized by their features, shapes, positions, and colors. Unlike the traditional methods, our analysis relies on changes in the natural scenery which influence changes to the features. The "background module" and "monitoring module" procedures are designed and used to detect debris flows and construct an event warning system. The multi-criteria decision-making method used to construct an event warring system includes gradient information and the percentage of variation of the features. To prove the feasibility of the proposed method for detecting debris flows, some real cases of debris flows are analyzed. The natural environment is simulated and an event warning system is constructed to warn of debris flows. Debris flows are successfully detected using these two procedures, by analyzing the variation in the detected features and the matched feature. The feasibility of the event warning system is proven using the simulation method. Therefore, the feature based method is found to be useful for detecting debris flows and the event warning system is triggered when debris flows occur.

Quality Assessment of Beef Using Computer Vision Technology

  • Rahman, Md. Faizur;Iqbal, Abdullah;Hashem, Md. Abul;Adedeji, Akinbode A.
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.896-907
    • /
    • 2020
  • Imaging technique or computer vision (CV) technology has received huge attention as a rapid and non-destructive technique throughout the world for measuring quality attributes of agricultural products including meat and meat products. This study was conducted to test the ability of CV technology to predict the quality attributes of beef. Images were captured from longissimus dorsi muscle in beef at 24 h post-mortem. Traits evaluated were color value (L*, a*, b*), pH, drip loss, cooking loss, dry matter, moisture, crude protein, fat, ash, thiobarbituric acid reactive substance (TBARS), peroxide value (POV), free fatty acid (FFA), total coliform count (TCC), total viable count (TVC) and total yeast-mould count (TYMC). Images were analyzed using the Matlab software (R2015a). Different reference values were determined by physicochemical, proximate, biochemical and microbiological test. All determination were done in triplicate and the mean value was reported. Data analysis was carried out using the programme Statgraphics Centurion XVI. Calibration and validation model were fitted using the software Unscrambler X version 9.7. A higher correlation found in a* (r=0.65) and moisture (r=0.56) with 'a*' value obtained from image analysis and the highest calibration and prediction accuracy was found in lightness (r2c=0.73, r2p=0.69) in beef. Results of this work show that CV technology may be a useful tool for predicting meat quality traits in the laboratory and meat processing industries.

Self-localization of a Mobile Robot for Decreasing the Error and VRML Image Overlay (오차 감소를 위한 이동로봇 Self-Localization과 VRML 영상오버레이 기법)

  • Kwon Bang-Hyun;Shon Eun-Ho;Kim Young-Chul;Chong Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.389-394
    • /
    • 2006
  • Inaccurate localization exposes a robot to many dangerous conditions. It could make a robot be moved to wrong direction or damaged by collision with surrounding obstacles. There are numerous approaches to self-localization, and there are different modalities as well (vision, laser range finders, ultrasonic sonars). Since sensor information is generally uncertain and contains noise, there are many researches to reduce the noise. But, the correctness is limited because most researches are based on statistical approach. The goal of our research is to measure more exact robot location by matching between built VRML 3D model and real vision image. To determine the position of mobile robot, landmark-localization technique has been applied. Landmarks are any detectable structure in the physical environment. Some use vertical lines, others use specially designed markers, In this paper, specially designed markers are used as landmarks. Given known focal length and a single image of three landmarks it is possible to compute the angular separation between the lines of sight of the landmarks. The image-processing and neural network pattern matching techniques are employed to recognize landmarks placed in a robot working environment. After self-localization, the 2D scene of the vision is overlaid with the VRML scene.

A Study on Implementation of a Robot Vision System for Recogniton of complex 2-D Objects (복잡한 2차원 물체 인식용 로봇 시각장치의 구현에 관한 연구)

  • Kim, Ho-Seong;Kim, Yeong-Seok;Byeon, Jeung-Nam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.1
    • /
    • pp.53-60
    • /
    • 1985
  • A computer vision system for robot is developed which can recognize a variety of two dimensional complex objects in gray level noisy scenes. the system is also capable of determining the position and orientation of the objects for robotlc manipulation. The hardware of the vision system is developed and a new edge tracking technique is also proposed. The linked edges are approximated to sample line drawing by split and merge algorithm. The system extracts many features from line drawing and constructs relational structure by the concave and convex hull of objects. In matching process, the input obhects are compared with the objects database which is formed by learning ability. Thelearning process is so simple that the system is very flexible. Several examples arc shown to demonstrate the usefulness of this system.

  • PDF

Analyses of Value System through Web Accessibility User Evaluation : For People with Low Vision (웹 접근성 사용자 평가를 통한 가치체계 분석 : 저 시력 장애인 대상으로)

  • Lim, Jong Duck;Ahn, Jae Kyoung
    • Journal of Information Technology Services
    • /
    • v.19 no.1
    • /
    • pp.113-127
    • /
    • 2020
  • Current web accessibility checks and automatic assessments have been pointed out that the assessment items and scores are evaluated from the developer's point of view rather than from the user's one. In addition, although most of the grades of an automatic assessment on the public web sites are excellent because they are built in accordance with the web accessibility development guidelines, not a few web sites shows relatively low grades in evaluating their usability test made by those users. Taking into account the inadequacy of these web accessibility assessments, this study has identified the differences between the grades of usability evaluations and automatic evaluations for people with low vision and analyzed the major factors affecting web accessibility usability evaluations using Repertory Grid Techniques. Also, the Hard Laddering method of the Means-End Chain theory was adopted to visualize the relationship between Attributes-Conferences-Value and a hierarchical value system analysis based on FGI(Focused Group Interview) to people with the low vision. This study proposed the measures to improve the current web accessibility automatic assessment allocation, expert evaluation criteria, and user task assessment. In particular, it is a web accessibility user evaluation model that can consider the web accessibility quality certification criteria and user review assessment by directly analyzing the user cognitive structure and value system. This study is expected to be useful as a research to enhance the quality of web accessibility assessment.

Map-Building and Position Estimation based on Multi-Sensor Fusion for Mobile Robot Navigation in an Unknown Environment (이동로봇의 자율주행을 위한 다중센서융합기반의 지도작성 및 위치추정)

  • Jin, Tae-Seok;Lee, Min-Jung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.434-443
    • /
    • 2007
  • Presently, the exploration of an unknown environment is an important task for thee new generation of mobile service robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems. This paper presents a technique for localization of a mobile robot using fusion data of multi-ultrasonic sensors and vision system. The mobile robot is designed for operating in a well-structured environment that can be represented by planes, edges, comers and cylinders in the view of structural features. In the case of ultrasonic sensors, these features have the range information in the form of the arc of a circle that is generally named as RCD(Region of Constant Depth). Localization is the continual provision of a knowledge of position which is deduced from it's a priori position estimation. The environment of a robot is modeled into a two dimensional grid map. we defines a vision-based environment recognition, phisically-based sonar sensor model and employs an extended Kalman filter to estimate position of the robot. The performance and simplicity of the approach is demonstrated with the results produced by sets of experiments using a mobile robot.

Camera Calibration using the TSK fuzzy system (TSK 퍼지 시스템을 이용한 카메라 켈리브레이션)

  • Lee Hee-Sung;Hong Sung-Jun;Oh Kyung-Sae;Kim Eun-Tai
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.56-58
    • /
    • 2006
  • Camera calibration in machine vision is the process of determining the intrinsic cameara parameters and the three-dimensional (3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand, Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge. TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D information. The experiments are performed to verify the proposed camera calibration.

  • PDF

Dimension Measurement for Large-scale Moving Objects Using Stereo Camera with 2-DOF Mechanism (스테레오 카메라와 2축 회전기구를 이용한 대형 이동물체의 치수측정)

  • Cuong, Nguyen Huu;Lee, Byung Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.543-551
    • /
    • 2015
  • In this study, a novel method for dimension measurement of large-scale moving objects using stereo camera with 2-degree of freedom (2-DOF) mechanism is presented. The proposed method utilizes both the advantages of stereo vision technique and the enlarged visibility range of camera due to 2-DOF rotary mechanism in measuring large-scale moving objects. The measurement system employs a stereo camera combined with a 2-DOF rotary mechanism that allows capturing separate corners of the measured object. The measuring algorithm consists of two main stages. First, three-dimensional (3-D) positions of the corners of the measured object are determined based on stereo vision algorithms. Then, using the rotary angles of the 2-DOF mechanism the dimensions of the measured object are calculated via coordinate transformation. The proposed system can measure the dimensions of moving objects with relatively slow and steady speed. We showed that the proposed system guarantees high measuring accuracy with some experiments.

A New line Matching Technique for Solving Correspondence Problem in Stereo Method (스테레오 방식에서 일치성 문제를 해결하기 위한 새로운 선소 정합법)

  • Kang, Dae-Kap;Kwon, Jung-Jang;Kim, Seong-Dae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.3
    • /
    • pp.116-123
    • /
    • 1990
  • Most algorithms utilized the horizontal epipolar lines for solving the correspondence problem in 3-D computer vision. However, the requirement is very difficult to be satisfied in real situations. In this paper, we propose a binocular-stereo matching algorithm, based on line matching method, which does not require the horizontal epipolar lines of the extreme pixels of a given line segment and two circles whose radius is equal to the maximum disparity. And we use the features including the direction of line segments, edge strength and cross-correlation for line matching. The experimental results show that the proposed algorithm can be a useful tool for solving the correspondence problem in 3-D computer vision.

  • PDF

A Study on an Image Noise Erase Method By to be an Image Noise Frequent Occur for Raining, in Measurement Machine Vision System for using CCD Camera Of Pantograph Sliding Plate Abrasion (판타그라프 습판마모의 머신비젼 측정에서 우천시 발생하는 영상의 노이즈 제거방법에 관한 연구)

  • Lee, Seong-Gwon;Lee, Dae-Won;Kim, Gil-Dong;Oh, Sang-Yoon;Kim, Seong-Min
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.872-898
    • /
    • 2007
  • Pantograph sliding plate abrasion auto-detect system, one of the electric rail car auto-detecting devices, is a system that decides how much abrasion and when to replace without an inspector physically looking at the abrasion on the wet plate using machine vision, a cutting-edge technology. This paper covers the cause of deteriorating reliability that affects pantograph wet plate edge detection due to noise added to the video when it rains. In order to remove such noise, problems should be checked through Smoothing, Averaging mask and Median filter using filtering technique and stable edge detection without being affected by noise should be induced in video measurement used in machine vision technology.

  • PDF