Yun, Sukchang;Lee, Young Jae;Kim, Chang Joo;Sung, Sangkyung
International Journal of Aeronautical and Space Sciences
/
제14권4호
/
pp.369-378
/
2013
This paper presents a vision/LiDAR integrated navigation system that provides accurate relative navigation performance on a general ground surface, in GNSS-denied environments. The considered ground surface during flight is approximated as a piecewise continuous model, with flat and slope surface profiles. In its implementation, the presented system consists of a strapdown IMU, and an aided sensor block, consisting of a vision sensor and a LiDAR on a stabilized gimbal platform. Thus, two-dimensional optical flow vectors from the vision sensor, and range information from LiDAR to ground are used to overcome the performance limit of the tactical grade inertial navigation solution without GNSS signal. In filter realization, the INS error model is employed, with measurement vectors containing two-dimensional velocity errors, and one differenced altitude in the navigation frame. In computing the altitude difference, the ground slope angle is estimated in a novel way, through two bisectional LiDAR signals, with a practical assumption representing a general ground profile. Finally, the overall integrated system is implemented, based on the extended Kalman filter framework, and the performance is demonstrated through a simulation study, with an aircraft flight trajectory scenario.
This paper presents an vulnerable road user (VRU) classification and tracking algorithm using vision and LiDAR sensor fusion method for urban autonomous driving. The classification and tracking for vulnerable road users such as pedestrian, bicycle, and motorcycle are essential for autonomous driving in complex urban environments. In this paper, a real-time object image detection algorithm called Yolo and object tracking algorithm from LiDAR point cloud are fused in the high level. The proposed algorithm consists of four parts. First, the object bounding boxes on the pixel coordinate, which is obtained from YOLO, are transformed into the local coordinate of subject vehicle using the homography matrix. Second, a LiDAR point cloud is clustered based on Euclidean distance and the clusters are associated using GNN. In addition, the states of clusters including position, heading angle, velocity and acceleration information are estimated using geometric model free approach (GMFA) in real-time. Finally, the each LiDAR track is matched with a vision track using angle information of transformed vision track and assigned a classification id. The proposed fusion algorithm is evaluated via real vehicle test in the urban environment.
본 논문은 FMCW LiDAR의 실시간 표적 신호처리 기법에 관해 기술하고 있다. FMCW LiDAR는 높은 검출민감도를 가져 낮은 출력만으로 장거리 측정이 가능하면서도 눈, 비, 안개 등 열악한 환경에서 강건한 검출성능을 가져 자율주행자동차용 차세대 LiDAR로 주목받고 있다. 본 논문은 주파수 영역의 신호처리를 위해 필요한 고속 데이터 획득, 전송 및 병렬 신호처리를 위한 하드웨어 구조에 대해 기술하였다. 획득된 시계열 신호로부터 주파수 특성을 분석하기 위하여, 푸리에 변환 연산을 FPGA로 구현하였다. 변환된 주파수영역 데이터로부터 강건한 표적검출 성능을 확보하기 위한 C-FAR 알고리즘에 대해 기술하였다. 표적의 스펙트럼 신호로부터 주파수 측정값의 해상도를 향상하고, 측정된 주파수 값을 표적의 거리 및 속도 정보로 변환하는 과정에 대해 상세히 기술하였다. 스캐너 2D 위치 및 표적의 거리 정보를 활용하여 3차원 영상으로 변환하고 이를 전시하였다. 제안된 FPGA 구조의 병렬 신호처리 알고리즘 적용을 통하여 FMCW LiDAR의 실시간 표적 신호처리 및 고해상도 영상획득 성능을 확인하였다.
Park, Cheonman;Lee, Seongbong;Kim, Hyeji;Lee, Dongjin
International journal of advanced smart convergence
/
제9권3호
/
pp.232-238
/
2020
In this paper, we study on aerial objects detection and position estimation algorithm for the safety of UAV that flight in BVLOS. We use the vision sensor and LiDAR to detect objects. We use YOLOv2 architecture based on CNN to detect objects on a 2D image. Additionally we use a clustering method to detect objects on point cloud data acquired from LiDAR. When a single sensor used, detection rate can be degraded in a specific situation depending on the characteristics of sensor. If the result of the detection algorithm using a single sensor is absent or false, we need to complement the detection accuracy. In order to complement the accuracy of detection algorithm based on a single sensor, we use the Kalman filter. And we fused the results of a single sensor to improve detection accuracy. We estimate the 3D position of the object using the pixel position of the object and distance measured to LiDAR. We verified the performance of proposed fusion algorithm by performing the simulation using the Gazebo simulator.
본 논문은 눈, 비, 안개 등 열악한 운용환경에도 강건한 표적검출 특성을 가지는 FMCW LiDAR에 대해서 기술하고 있다. 특히 FMCW LiDAR의 거리 해상도, 가간섭거리 및 최대측정거리 성능에 직접적으로 영향을 미치는 주파수변조레이저의 성능개선에 대해 기술하고 있다. 불평형 Mach-Zehnder 레이저간섭계를 활용하여, 레이저의 발진주파수의 변화율을 실시간 측정하고, 주파수변조 오차를 보정하는 광학식 위상동기루프 기술을 이용한 주파수변조 방법에 대해 기술하였다. 가간섭거리가 긴 레이저 광원을 발진하기 위해 확장공진기형 레이저다이오드를 적용하였으며, 레이저에서 발진되는 주파수 측정을 위해 광집적회로 구조의 레이저간섭계를 적용하였다. 개발된 FMCW LiDAR의 대역폭과 거리해상도는 각각 10.045GHz와 0.84mm로 측정되었다.
최근 코로나 19가 유행하고 더불어 고령화 시대와 1인 가구 증가로 인해 가구 구성원이 집에서 다양한 활동을 하며 머무는 시간이 매우 증가하였다. 본 연구에서는 노인을 포함한 1인 가구의 구성원들의 이상 징후를 탐지하기 위한 알고리즘을 제안한다. 홈 CCTV를 통한 영상 센서 알고리즘, 스마트폰에 내장된 가속도 센서를 이용한 활동 센서 알고리즘 및 2D LiDAR 센서 기반의 LiDAR 센서 알고리즘을 이용한 사람의 움직임 및 낙상 탐지 결과를 기반으로 이상 징후를 탐지하는 알고리즘들을 제안한다. 하지만, 각 단일 센서 기반 알고리즘은 센서가 가진 한계점으로 인해 특정 상황에서 이상징후를 탐지하기 어려운 단점을 가지고 있다. 그에 따라 단일 센서 기반 알고리즘만을 사용한 것보다 다양한 상황에서 이상 징후를 탐지하기 위해 각 알고리즘을 결합하는 융합 방식을 제안한다. 우리는 각 센서로 수집한 데이터를 통해 알고리즘들의 성능을 평가하고, 특정 시나리오들을 통하여 알고리즘 하나만 사용하여 정확한 이상 징후를 탐지할 수 없는 상황에서도 융합 방식을 통해 서로 보완하여 정확한 이상 징후를 효율적으로 탐지할 수 있음을 보여준다.
본 논문은 2D 라이다를 이용해서 포트홀을 검출하는 시스템과 알고리즘을 제안한다. 기존의 포트홀을 검출하는 방법에는 진동, 3D 복원, 영상, 명암을 기반으로 한 방법이 있다. 제안하는 포트홀 검출 시스템은 저가형 LiDAR 두 개를 이용하여 포트홀 검출성능을 개선한다. 포트홀 검출 알고리즘은 LiDAR를 통해 얻은 데이터의 노이즈를 제거하기 위한 전처리과정, 시각화를 위한 클러스터링과 선분추출, 포트홀 검출을 위한 기울기 함수를 구하는 단계로 나뉜다. 기울기 함수를 통해 추출된 데이터의 특징점을 찾아내어 포트홀 여부를 검사하고 포트홀의 깊이와 폭을 측정한다. 2개의 라이다를 활용한 포트홀 검출 시스템을 개발하고, 라이다 장치를 이동하면서 포트홀을 검출함으로써 2D LiDAR를 이용한 3차원 포트홀 검출 시스템의 성능을 보인다.
In this paper, we propose a new indoor localization method for indoor mobile robots using LiDAR. The indoor mobile robots operating in limited areas usually require high-precision localization to provide high level services. The performance of the widely used localization methods based on radio waves or computer vision are highly dependent on their usage environment. Therefore, the reproducibility of the localization is insufficient to provide high level services. To overcome this problem, we propose a new localization method based on the comparison between ceiling shape information obtained from LiDAR measurement and the blueprint. Specifically, the method includes a reliable segmentation method to classify point clouds into connected planes, an effective comparison method to estimate position by matching 3D point clouds and 2D blueprint information. Since the ceiling shape information is rarely changed, the proposed localization method is robust to its usage environment. Simulation results prove that the position error of the proposed localization method is less than 10 cm.
Structural health monitoring is concerned with the safety and serviceability of the users of structures, especially for the case of building structures and infrastructures. When considering the safety of a structure, the maximum stress in a member due to live load, earthquake, wind, or other unexpected loadings must be checked not to exceed the stress specified in a code. It will not fail at yield, excessively large displacements will deteriorate the serviceability of a structure. To guarantee the safety and serviceability of structures, the maximum displacement in a structures must be monitored because actual displacement is a direct assessment index on its stiffness. However, no practical method has been reported to monitor the displacement, especially for the case of displacement of high-rise buildings because of not to easy accessive. In this paper, it is studied displacement measuring method of high-rise buildings using LiDAR The method is evaluated by analyzing accuracy of measured displacements for existing building.
본 연구는 V2I통신을 이용하여 교차로 등의 사각지대로 인해 발생할 수 있는 충돌 사고를 예방하기 위한 충돌 방지체계를 제안한다. 교차로의 인프라에 위치한 Vision센서와 LiDAR센서가 물체를 인식하고 사고 위험이 있는 차량에게 경고함으로써 사고를 미연에 방지한다. 딥러닝 기반의 YOLOv4를 이용하여 교차로에 진입하는 물체를 인식하고 LiDAR 센서와의 Calibration을 통해 대상 물체와의 맨하탄 거리값을 이용하여 충돌 예상시간과 제동거리에 대한 가중치를 계산하고 안전거리를 확보한다. 차량-인프라간 통신은 ROS통신을 이용하였으며 충돌 경고 외에도 진입 물체의 Class, 거리, 진행속도 등의 다양한 정보를 차량에 전달함으로써 사고를 미연에 방지하고자 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.