• Title/Summary/Keyword: Visible Image

Search Result 501, Processing Time 0.028 seconds

Visible Image Enhancement Method Considering Thermal Information from Infrared Image (원적외선 영상의 열 정보를 고려한 가시광 영상 개선 방법)

  • Kim, Seonkeol;Kang, Hang-Bong
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.550-558
    • /
    • 2013
  • The infrared and visible images are represented by different information due to the different wavelength of the light. The infrared image has thermal information and the visible image has texture information. Desirable results are obtained by fusing infrared and visible information. To enhance a visible image, we extract a weight map from a visible image using saturation, brightness. After that, the weight map is adjusted using thermal information in the infrared image. Finally, an enhanced image is resulted from combining an infrared image and a visible image. Our experiment results show that our proposed algorithm is working well to enhance the smoke in the original image.

A Noisy Infrared and Visible Light Image Fusion Algorithm

  • Shen, Yu;Xiang, Keyun;Chen, Xiaopeng;Liu, Cheng
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.1004-1019
    • /
    • 2021
  • To solve the problems of the low image contrast, fuzzy edge details and edge details missing in noisy image fusion, this study proposes a noisy infrared and visible light image fusion algorithm based on non-subsample contourlet transform (NSCT) and an improved bilateral filter, which uses NSCT to decompose an image into a low-frequency component and high-frequency component. High-frequency noise and edge information are mainly distributed in the high-frequency component, and the improved bilateral filtering method is used to process the high-frequency component of two images, filtering the noise of the images and calculating the image detail of the infrared image's high-frequency component. It can extract the edge details of the infrared image and visible image as much as possible by superimposing the high-frequency component of infrared image and visible image. At the same time, edge information is enhanced and the visual effect is clearer. For the fusion rule of low-frequency coefficient, the local area standard variance coefficient method is adopted. At last, we decompose the high- and low-frequency coefficient to obtain the fusion image according to the inverse transformation of NSCT. The fusion results show that the edge, contour, texture and other details are maintained and enhanced while the noise is filtered, and the fusion image with a clear edge is obtained. The algorithm could better filter noise and obtain clear fused images in noisy infrared and visible light image fusion.

Real-Time Visible-Infrared Image Fusion using Multi-Guided Filter

  • Jeong, Woojin;Han, Bok Gyu;Yang, Hyeon Seok;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3092-3107
    • /
    • 2019
  • Visible-infrared image fusion is a process of synthesizing an infrared image and a visible image into a fused image. This process synthesizes the complementary advantages of both images. The infrared image is able to capture a target object in dark or foggy environments. However, the utility of the infrared image is hindered by the blurry appearance of objects. On the other hand, the visible image clearly shows an object under normal lighting conditions, but it is not ideal in dark or foggy environments. In this paper, we propose a multi-guided filter and a real-time image fusion method. The proposed multi-guided filter is a modification of the guided filter for multiple guidance images. Using this filter, we propose a real-time image fusion method. The speed of the proposed fusion method is much faster than that of conventional image fusion methods. In an experiment, we compare the proposed method and the conventional methods in terms of quantity, quality, fusing speed, and flickering artifacts. The proposed method synthesizes 57.93 frames per second for an image size of $320{\times}270$. Based on our experiments, we confirmed that the proposed method is able to perform real-time processing. In addition, the proposed method synthesizes flicker-free video.

Visible and NIR Image Synthesis Using Laplacian Pyramid and Principal Component Analysis (라플라시안 피라미드와 주성분 분석을 이용한 가시광과 적외선 영상 합성)

  • Son, Dong-Min;Kwon, Hyuk-Ju;Lee, Sung-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.133-140
    • /
    • 2020
  • This study proposes a method of blending visible and near infrared images to enhance edge details and local contrast. The proposed method consists of radiance map generation and color compensation. The radiance map is produced by a Laplacian pyramid and a soft mixing method based on principal component analysis. The color compensation method uses the ratio between the composed radiance map and the luminance channel of a visible image to preserve the visible image chrominance. The proposed method has better edge details compared to a conventional visible and NIR image blending method.

Reversible Multipurpose Watermarking Algorithm Using ResNet and Perceptual Hashing

  • Mingfang Jiang;Hengfu Yang
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.756-766
    • /
    • 2023
  • To effectively track the illegal use of digital images and maintain the security of digital image communication on the Internet, this paper proposes a reversible multipurpose image watermarking algorithm based on a deep residual network (ResNet) and perceptual hashing (also called MWR). The algorithm first combines perceptual image hashing to generate a digital fingerprint that depends on the user's identity information and image characteristics. Then it embeds the removable visible watermark and digital fingerprint in two different regions of the orthogonal separation of the image. The embedding strength of the digital fingerprint is computed using ResNet. Because of the embedding of the removable visible watermark, the conflict between the copyright notice and the user's browsing is balanced. Moreover, image authentication and traitor tracking are realized through digital fingerprint insertion. The experiments show that the scheme has good visual transparency and watermark visibility. The use of chaotic mapping in the visible watermark insertion process enhances the security of the multipurpose watermark scheme, and unauthorized users without correct keys cannot effectively remove the visible watermark.

Infrared and Visible Image Fusion Based on NSCT and Deep Learning

  • Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1405-1419
    • /
    • 2018
  • An image fusion method is proposed on the basis of depth model segmentation to overcome the shortcomings of noise interference and artifacts caused by infrared and visible image fusion. Firstly, the deep Boltzmann machine is used to perform the priori learning of infrared and visible target and background contour, and the depth segmentation model of the contour is constructed. The Split Bregman iterative algorithm is employed to gain the optimal energy segmentation of infrared and visible image contours. Then, the nonsubsampled contourlet transform (NSCT) transform is taken to decompose the source image, and the corresponding rules are used to integrate the coefficients in the light of the segmented background contour. Finally, the NSCT inverse transform is used to reconstruct the fused image. The simulation results of MATLAB indicates that the proposed algorithm can obtain the fusion result of both target and background contours effectively, with a high contrast and noise suppression in subjective evaluation as well as great merits in objective quantitative indicators.

Design of an observer-based decentralized fuzzy controller for discrete-time interconnected fuzzy systems (얼굴영상과 예측한 열 적외선 텍스처의 융합에 의한 얼굴 인식)

  • Kong, Seong G.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.437-443
    • /
    • 2015
  • This paper presents face recognition based on the fusion of visible image and thermal infrared (IR) texture estimated from the face image in the visible spectrum. The proposed face recognition scheme uses a multi- layer neural network to estimate thermal texture from visible imagery. In the training process, a set of visible and thermal IR image pairs are used to determine the parameters of the neural network to learn a complex mapping from a visible image to its thermal texture in the low-dimensional feature space. The trained neural network estimates the principal components of the thermal texture corresponding to the input visible image. Extensive experiments on face recognition were performed using two popular face recognition algorithms, Eigenfaces and Fisherfaces for NIST/Equinox database for benchmarking. The fusion of visible image and thermal IR texture demonstrated improved face recognition accuracies over conventional face recognition in terms of receiver operating characteristics (ROC) as well as first matching performances.

A Novel Image Dehazing Algorithm Based on Dual-tree Complex Wavelet Transform

  • Huang, Changxin;Li, Wei;Han, Songchen;Liang, Binbin;Cheng, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5039-5055
    • /
    • 2018
  • The quality of natural outdoor images captured by visible camera sensors is usually degraded by the haze present in the atmosphere. In this paper, a fast image dehazing method based on visible image and near-infrared fusion is proposed. In the proposed method, a visible and a near-infrared (NIR) image of the same scene is fused based on the dual-tree complex wavelet transform (DT-CWT) to generate a dehazed color image. The color of the fusion image is regulated through haze concentration estimated by dark channel prior (DCP). The experiment results demonstrate that the proposed method outperforms the conventional dehazing methods and effectively solves the color distortion problem in the dehazing process.

Fast Generation of Stereoscopic Virtual Environment Display Using P-buffer

  • Heo, Jun-Hyeok;Jung, Soon-Ki;Wohn, Kwang-Yun
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.202-210
    • /
    • 1998
  • This paper is concerned with an efficient generation of stereoscopic views for complex virtual environments by exploiting frame coherence in visibility. The basic idea is to keep visible polygons throughout the rendering process. P-buffer, a buffer of image size, holds the id of the visible polygon for each pixel. This contrasts to the frame buffer and the Z-buffer which hold the color information and the depth information, respectively. For the generation of a consecutive image, the position and the orientation of the visible polygons in the current view are updated according to the viewer's movements, and re-rendered on the current image under the assumption that, when the viewer moves slightly, the visibility of polygons remains unchanged. In the case of stereoscopic views, it may not introduce much difficulty when we render the right(left) image using visible polygons on the (right) image only, The less difference in two images is, the easier the matching becomes in perceiving depth. Some psychophysical experiments have been conducted to support this claim. The computational complexity for generating a fight(left) image from the previous left(right) image is bounded by the size of image space, and accordingly. It is somewhat independent of the complexity of the 3-D scene.

  • PDF

Deep Facade Parsing with Occlusions

  • Ma, Wenguang;Ma, Wei;Xu, Shibiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.524-543
    • /
    • 2022
  • Correct facade image parsing is essential to the semantic understanding of outdoor scenes. Unfortunately, there are often various occlusions in front of buildings, which fails many existing methods. In this paper, we propose an end-to-end deep network for facade parsing with occlusions. The network learns to decompose an input image into visible and invisible parts by occlusion reasoning. Then, a context aggregation module is proposed to collect nonlocal cues for semantic segmentation of the visible part. In addition, considering the regularity of man-made buildings, a repetitive pattern completion branch is designed to infer the contents in the invisible regions by referring to the visible part. Finally, the parsing map of the input facade image is generated by fusing the results of the visible and invisible results. Experiments on both synthetic and real datasets demonstrate that the proposed method outperforms state-of-the-art methods in parsing facades with occlusions. Moreover, we applied our method in applications of image inpainting and 3D semantic modeling.