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Abstract 

 
Correct facade image parsing is essential to the semantic understanding of outdoor scenes. 
Unfortunately, there are often various occlusions in front of buildings, which fails many 
existing methods. In this paper, we propose an end-to-end deep network for facade parsing 
with occlusions. The network learns to decompose an input image into visible and invisible 
parts by occlusion reasoning. Then, a context aggregation module is proposed to collect 
nonlocal cues for semantic segmentation of the visible part. In addition, considering the 
regularity of man-made buildings, a repetitive pattern completion branch is designed to infer 
the contents in the invisible regions by referring to the visible part. Finally, the parsing map of 
the input facade image is generated by fusing the results of the visible and invisible results. 
Experiments on both synthetic and real datasets demonstrate that the proposed method 
outperforms state-of-the-art methods in parsing facades with occlusions. Moreover, we 
applied our method in applications of image inpainting and 3D semantic modeling. 
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1. Introduction 

The purpose of facade parsing is to segment rectified facade images into semantic elements, 
including windows, doors, and balconies, etc. It is a key step in urban scene understanding and 
can also help other tasks. Unfortunately, serious occlusions are quite common in facade 
images, as shown in Fig. 1. How to parse buildings with occlusions is an inevitable but 
challenging problem. Addressing the problem will bring great benefits to many applications, 
e.g., city surveying and mapping, completion of facade images, and semantic 3D 
reconstruction of buildings. 

Traditional methods for facade parsing [1] attempt to address the occlusion problem by 
using grammars or priors predefined for man-made buildings. It is difficult for these methods 
to generate results coherent with specific input images. In contrast, facade parsing is the 
semantic segmentation of facade images. Recently, many CNN-based models for semantic 
segmentation of indoor scenes [2] and street scenes [3], [4] have been developed and have 
shown performances beyond traditional methods. These models have also been adapted to 
parse facade images, e.g., by integrating facade-specific losses [5]. However, these models are 
designed to learn for pixel-wise classification according to the appearances around the pixels. 
Directly training them to predict labels for invisible pixels will confuse them in terms of the 
attributes of facade elements. The results obtained in this way, e.g., by using the model of 
DeepFacade [5], are generally cluttered in occluded regions, as shown in Fig. 1.  

 

    

    
Input Image Ground Truth DeepFacade [5] Ours 

Fig. 1. Facade parsing results obtained by DeepFacade [5] and the proposed method. 
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Repetitive patterns, such as windows, balconies and tiles, are the most prominent and 

significant features in urban buildings. Existing facade parsing methods [6], [7] adopt a strong 
repetition assumption for analyzing facade structures. These hard-coded methods cannot deal 
with occlusion if the parsed buildings violate prior assumptions. Different from them, we 
model the repetitive patterns of building facades as prior knowledge into deep neural networks 
and learn to reason the contents of occluded regions with the help of visible parts, which is of 
great importance to the facade parsing with occlusions. 

In this paper, we present an end-to-end deep network for facade parsing with occlusions. It 
learns to decompose an input image into visible and invisible parts via occlusion reasoning. 
For visible parts, a specifically designed segmentation branch capable of aggregating nonlocal 
context is adopted to infer their labels. To further refine the results obtained by the context 
aggregation module, we leverage the regularity in man-made buildings as done in traditional 
methods. In contrast, we design a repetitive pattern completion network, which can learn to 
infer contents in occluded parts by visible parts in the same image. Compared with those 
generated by predefined priors/grammars, our results are more realistic. Finally, we merge the 
results in the visible and invisible parts with a fusion module. We perform an evaluation on 
two facade datasets with different degrees of occlusions: ECP-occluded and ENPC Art-deco 
[8]. ENPC Art-deco is a public benchmark dataset, in which most of the images have relatively 
small occlusions (occupying less than 18% of an image). ECP-occluded is a synthesized 
dataset generated by adding collected trees to the original clean ECP data [9] to simulate 
facade images captured along streets with luxuriant trees. 

Our main contributions are four-fold: 
 We propose a novel deep architecture for end-to-end facade parsing, which is the first 

work to effectively deal with facade parsing with large occlusions in the framework of 
deep learning. 

 We design a context aggregation module to capture nonlocal context information of 
facades and propose a repetitive pattern completion network (RPCNet) by considering 
the regularity of man-made buildings and the cues of visible parts to infer contents in 
occluded regions. 

 We apply joint multi-task learning and perform extensive comparisons and ablation 
experiments to verify the proposed architecture and its key components. 

 To further evaluate the effectiveness of the proposed method, we provide the application 
implementations of image inpainting and 3D semantic modeling, which obtain promising 
results. 

2. Related Work 

2.1 Traditional methods 
Traditional methods are highly dependent on hand-crafted knowledge priors. Several methods 
[1], [10]–[12] have attempted to solve facade parsing with occlusions by using shape 
grammars or hard constraints defined for buildings. For example, [1] adopted user-defined 
shape priors that encode the regular structures and layouts of elements to semantically 
decompose occluded regions. [11] proposed parsing facade images using dynamic 
programming with hard constraints. Inspired by them, [12] dealt with occlusions by leveraging 
the symmetry and repetitions of building elements. These rule-based traditional methods have 
difficulty generating realistic parsing results coherent with input images. Additionally, some 
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works [13] typically learned to discriminate different elements by using handcrafted features 
and pixel-wise classifiers. [14] adopted the auto-context features for 2D and 3D facade 
segmentation. In general, both of these methods are incapable of handling occlusions. 

The repetitive pattern is an important attribute for facade parsing and occluded content 
inference. The early method [15] introduced an approach for separating and segmenting 
individual facades using prior knowledge of repetitive patterns. [6] combined low-level 
classifiers with mid-level object detectors to infer an irregular lattice for facade parsing. [7] 
combined traditional feature extraction processes and a Kronecker product low-rank model to 
detect the repetitive patterns of facade structures. The method can only parse the specific 
repetitive pattern, such as windows, rather than all facade labels. It would fail if the Kronecker 
product model cannot represent the structures of facades. However, our method takes full 
advantage of the deep learning techniques and learns the repetitive patterns from data. [16] 
proposed a pipeline to extract and synthesize repetitive patterns in single images. We mainly 
focus on using the repeatability of buildings to improve the facade parsing results. 

2.2 Deep learning-based methods 
Compared to traditional methods, deep learning frameworks, specifically being fully 
convolutional networks (FCNs) [17], were proved to be powerful for pixel-wise classification. 
For example, U-Net [18] employed skip-connections to fuse the low-level features to 
high-level ones. The low-level features mainly include edges and textures of objects and the 
high-level ones include some semantic information. SegNet [19] stored the index of 
max-pooling which is later used to upsampling low-resolution features. However, these 
methods only perform pixel-wise classification well in visible parts. They cannot handle 
inference in invisible regions. The surrounding context is known to be helpful in dealing with 
occlusions and many context aggregation methods have appeared [20], [21]. For example, 
PSPNet [20] proposed a pyramid pooling module to aggregate context from sub-regions at 
multiple scales. DeepLabv3+ [21] used dilated convolutions of different rates for context 
information aggregation. However, context information is competent just for small occlusions. 
It is quite challenging to handle serious occlusions. Instead of only adopting a context 
aggregation module, we specially design a new branch incorporating the regularity in 
man-made buildings. 

There are also some deep learning-based methods that are proposed for facade parsing. [22] 
proposed a fully convolutional network to parse some components cropped from facades. [23] 
applied FCNs to obtain the most likely label of each pixel, then the results were optimized 
through Restricted Boltzmann Machines by adopting horizontal and vertical scanlines. [24] 
proposed three networks to achieve multilabel semantic segmentation results of facade images. 
DeepFacade [5], [25] adopted a symmetric regularization which includes a rectangle 
constraint and a detector constraint to incorporate the shape knowledge of facade elements. 
Inspired by the regularities of building facades, Pyramid ALKNet [26] proposed the pyramid 
atrous large kernel module to extract the nonlocal structural context information. [27] 
presented a multiview architecture to collect reliable and visible clues from nearby views and 
used these clues to enhance the feature representation of a target view. Some other works 
mainly focus on window detection [28], [29] and building facade reconstruction [30]. The 
above methods usually require clean building facades. As far as we know, there is no work 
dealing with facade parsing with serious occlusions in the framework of deep learning. 
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3. Proposed Architecture 
In this section, we first present the end-to-end deep facade parsing architecture to address 
occlusions, which is shown in Fig. 2. Next, we explain details of the coarse semantic 
segmentation branch and the repetitive pattern completion branch which are designed to infer 
contents in occluded regions. Finally, the fusion module and the loss function for training each 
branch are provided. 

Our method (Fig. 2) is based on the encoder architecture. The encoder pre-trained on 
ImageNet extracts features that are an eighth of the size of the input image. We remove the last 
two downsampling operations of the encoder and employ the dilated convolutions to obtain 
more details and produce dense features. The common features extracted from the encoder are 
fed into a coarse semantic segmentation branch and a repetitive pattern completion branch. 
The coarse semantic segmentation branch captures the nonlocal structural context information 
for parsing the visible part of the building facade correctly. The repetitive pattern completion 
branch first reasons for the main occlusions of the input image, and then infers the contents of 
occluded regions using the coarse facade parsing results. Finally, the coarse semantic 
segmentation map and the completed repetitive patterns are fed into the fusion module to 
produce the final facade parsing result. 

 

 
Fig. 2. Overview of the proposed architecture. An encoder is adopted to extract common features 
from the input image. The coarse semantic segmentation branch employs a context aggregation 

module to perform pixel-wise classification on the whole image. The repetitive pattern completion 
branch first produces an occlusion mask using common features. Then, elements of repetitive 

patterns in the visible regions are fed into RPCNet. RPCNet reasons the contents in the occluded 
parts. Finally, completed repetitive patterns are fused with the coarse semantic segmentation result. 
 

3.1 Coarse Semantic Segmentation 
We expect CNN to be able to capture the man-made structures of building facades. However, 
current FCN-based methods are incapable of aggregating the structural context of facades due 
to the complex scenes, such as the occlusions caused by trees and cars. Most elements, such as 
windows, doors, and balconies, of building facades have rectangular shapes. Typically, in 
every single image, these elements are aligned and similar. Inspired by these characteristics, 
we formulate the intrinsic structure information of facades into deep neural networks and 
propose the context aggregation module. The context aggregation module obtains the 
structures of facade images by capturing the nonlocal context along with the horizontal and 
vertical directions from multiple effective fields-of-view. 
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With the common features extracted by the encoder, the coarse semantic segmentation 
branch adopts a context aggregation module to capture nonlocal context information of 
facades. In detail, we employ the original atrous spatial pyramid pooling (ASPP) [31] (see Fig. 
3) which consists of one 1 × 1 convolution and three 3 × 3 convolutions with rate=(12, 24, 36), 
and image-level features (all with 256 channels). The ASPP module collects multi-scale 
context information only from a few surrounding pixels and cannot capture dense semantics 
actually. Therefore, we add a residual large kernel (see Fig. 3) after the ASPP module. The 
residual large kernel contains a parallel 1 × k and k × 1 convolutions and a shortcut connection 
for performing identity mapping. Their outputs are simply fused by elementwise addition. The 
k is fixed at 15 in our experiments. The two 1D large kernels are efficient in producing 
discriminative features because facade elements, such as windows and balconies, are typically 
aligned horizontally and vertically. Thus, the common features from the encoder are greatly 
enhanced by our context aggregation module. A classifier uses the contextual features to 
generate a coarse facade parsing result of the whole image. 

 

 
Fig. 3. The proposed context aggregation module. k means the kernel size in the 1D convolution 

layer. 

3.2 Repetitive Pattern Completion 
There are some challenging occluded repetitive patterns that are quite common in facade 
images, such as nonaligned windows, elements of different widths and complex occlusion 
objects. Particularly, the nonaligned windows are inconsistent with some hard rules of 
man-made structures, which straightforwardly causes grammar-based methods to generate 
incorrect parsing results. In addition, the width differences in surrounding windows and the 
gap differences between elements lead to serious irregular lattices. Constraint-based 
traditional methods cannot handle these diverse and complex patterns. Furthermore, 
occlusions vary in natural scenes. For example, the contours and sizes of occlusions are not 
fixed, and the categories of occluded objects are unknown. The densities of occlusions that 
greatly affect the parsing results are always uncertain. The appearances in the occluded region 
can be perceived through sparse occlusions, but cannot be perceived under dense occlusions. 

To further refine the facade parsing results, we leverage the repetitions in man-made 
buildings. In particular, we design a repetitive pattern completion branch to infer the contents 
of occluded regions depending on the repetitive patterns of visible regions. For the occluded 
part, we employ a residual block [32] to transfer and reduce the dimension of common features. 
The occlusion mask is then generated by a classifier. Since windows and balconies are the 
most repetitive elements in facades, we use the two-class layers after the softmax activation 
from the coarse semantic segmentation branch. Again, the occlusion mask after softmax 
activation with window and balcony layers is used to form the incomplete repetitive patterns 
(see Fig. 2). The occlusion mask and incomplete repetitive patterns are concatenated and sent 
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to the repetitive pattern completion network together. 
 

3.2.1 Repetitive Pattern Completion Network 
The repetitive pattern completion network, abbreviated as RPCNet, uses the regularities of 
repetitive patterns in visible parts to infer the contents in occluded parts. The most repetitive 
pattern in the facade is the window-balcony combination, which always has a rectangular 
shape; balconies are required to be located below windows, and almost all pairs of 
window-balconies lie on the same floor and have the same height. Therefore, we take the 
combination of windows and balconies (see Fig. 4) as a repetitive pattern of facades. The 
RPCNet is designed to complete the incomplete repetitive patterns using these characteristics 
of rectangular shapes and repetitive patterns of man-made structures in visible regions. 
Moreover, in order to achieve accurate completion results, the repetitive pattern completion 
branch recurrently adopts the RPCNet to infer the contents in occluded regions. 
 

 
Fig. 4. The overview of the repetitive pattern completion network. The incomplete repetitive patterns 

and occlusion mask are iteratively fed into RPCNet to infer the contents in occluded regions. 
 

As shown in Fig. 4, the incomplete repetitive patterns and the occlusion mask are 
concatenated to form the inputs of RPCNet. The occlusion mask provides guidance for 
RPCNet to infer the contents in occluded regions. RPCNet is a U-shaped network that has 
been proven to be useful in image completion [33] and image-to-image translation [34]. To 
capture the whole context information of the input image, we use image-level features, like 
[35]. Global average pooling is applied on the last feature map of the encoder, followed by a 1 
× 1 convolution to adjust the channel and then bilinear upsampling is applied for the features. 
Next, a global convolutional network (GCN) [36] which consists of a combination of 1 × k + k 
× 1 and k × 1 + 1 × k convolutions, is employed to aggregate the global context information of 
each scale (see Fig. 4). In our experiments, k is fixed at 15. RPCNet adopts a top-down fusion 
strategy, and we first upsample the spatial resolution of a coarse resolution feature map by a 
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factor of 2 through bilinear upsampling. Then the upsampled map is fused with the 
corresponding bottom-up feature map enhanced by GCN via element-wise addition. Finally, 
RPCNet generates a parsing result that has the same resolution and channel with the input 
repetitive patterns. The parsing result demonstrates that the context information for shapes and 
layouts from multi-scale features are well captured by RPCNet. 

In particular, the repetitive patterns completed by a previous RPCNet and the occlusion 
mask are concatenated again, and fed into the next RPCNet to obtain more accurate repetitive 
pattern results. The recurrent completion process improves the quality of occluded patterns, as 
shown in Fig. 5. With the increasing number of iterations, the shape of each pattern and the 
layouts of facades become better. In the implementation, we experimentally set the number of 
iterations to 5. Note that the parameters of all RPCNet are shared. 

 
Fig. 5. Completion results of RPCNet with different iterations. 

 

3.2.2 Synthetic Repetitive Patterns 
Considering that there are too few training facade images and enhancing the completion 
results, we synthesize some repetitive pattern images with occlusions for training the proposed 
RPCNet. The synthetic training images which contain window and balcony combination. 
Specifically, we first generate images and repetitive patterns of random heights and widths. 
Then, we adopt an occlusion mask of random size to cover repetitive patterns at random 
locations. In the experiment, we first generate 10000 synthetic images for pretraining the 
RPCNet and use the facade training set to finetune the RPCNet. RPCNet is not only an 
end-to-end deep network that can be used as plug-and-play in any state-of-the-art semantic 
segmentation method, but can also handle quite challenging occlusions. For example, in Fig. 5, 
even though the occlusion region is large and the sizes of windows are different, our RPCNet 
can handle these serious occlusions by learning the diverse repetitive patterns from data. 

3.3 Fusion Module 
In Fig. 6, we design a fusion module by considering the repetitive and non-repetitive regions 
of facades. For example, windows are generally grid-like, but some balconies cross more than 
one window or even the whole facade horizontally. The proposed fusion module can handle 
this irregular phenomenon. After obtaining the completed repetitive patterns Pcompleted from the 
repetitive pattern completion branch, we feed these patterns into a fusion module together with 
the coarse semantic segmentation result Scoarse. First, we produce the repetitive mask Mrepetitive 
and non-repetitive mask Mnon−repetitive according to the Pcompleted. The window label and balcony 
label in Pcompleted are marked as repetitive mask Mrepetitive, and the rest of the pixels are marked 
as non-repetitive mask Mnon−repetitive. Then, we crop the repetitive patterns in Mrepetitive and 
coarse results in Mnon−repetitive. After cropping, we fuse the repetitive patterns and the coarse 
result to generate a final facade parsing result Sfinal. Therefore, our fusion module can not only 
handle the irregular layout of balconies through the powerful context aggregation module of 
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the coarse semantic segmentation branch, but also effectively infers the contents in occluded 
regions through the repetitive pattern completion branch. 

 
Fig. 6. The pipeline of the fusion module. The completed repetitive patterns and the coarse results are 

from the repetitive pattern completion branch and coarse semantic segmentation branch, 
respectively. 

 

3.4 Joint Multi-task Learning 
To train the overall networks, we jointly learn the coarse semantic segmentation, occlusion 
reasoning and repetitive pattern completion together. Here, standard cross-entropy (CE) is 
used on predicted coarse semantic segmentation s, occlusion mask o and repetitive patterns p. 
The final loss function can be written as: 
 

𝐿 = 𝐿𝑐𝑜𝑎𝑟𝑠𝑒(𝑠, �̂�)  + 𝐿𝑜𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛(𝑜, 𝑜�) +  𝐿𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑝, �̂�) (1) 
 
where �̂� is the ground truth probability distribution of semantic labels, 𝑜� is the ground truth 
probability of the occlusion mask and �̂�  is the ground truth probability distribution of 
repetitive patterns, respectively. As depicted in Fig. 2, the CE supervision on coarse semantic 
segmentation, occlusion mask and repetitive patterns are performed before feeding them into 
the fusion module. 

4. Experiments 

4.1 Datasets and Metrics 
To evaluate the effectiveness of the proposed method, we conduct comprehensive experiments 
on the ECP-occluded dataset and the ENPC Art-deco dataset. 

The ECP dataset [9] has 104 rectified facade images of Haussmannian style buildings that 
involve eight classes: window, wall, balcony, door, roof, chimney, sky, and shop. The original 
annotations are imprecise, so we use the annotations reannotated by [13]. In our experiments, 
we perform 5-fold cross-validation on this dataset. Since ECP is a clean facade dataset that has 
no significant occlusions, we add some occlusions to the facades to evaluate the performances 
of the proposed method. First, we collect and crop some occlusions from Cityscapes [4] in 
urban scenes. Then, we randomly choose an occlusion and paste it at a random location of a 
facade image. Finally, we use Poisson matting [37] to merge the occlusion and the facade 
image. Some occluded facade images can be seen in Fig. 7. We call this dataset 
ECP-occluded. 
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The ENPC Art-deco dataset, first used in [8], contains 79 rectified facade images cropped 
from the Art-deco style buildings in Paris. Similar to the ECP dataset, this dataset consists of 
seven classes: window, wall, balcony, door, roof, sky, and shop. The facades of the ENPC 
Art-deco dataset have some real occlusions that cause great challenges for facade parsing. We 
perform a 5-fold cross-validation on this dataset. 

 

      
Fig. 7. The synthetic facade images on the ECP-occluded dataset. 

 
Most facade images on the ENPC Art-deco dataset have clean facades or present sparse 

occlusions, such as scattered branches and leaves of trees, which are easy to parse. The 
synthetic images on the ECP-occluded dataset have large and dense occlusions which cause 
great challenges for facade parsing. The two datasets are complementary, and the synthetic 
ECP-occluded dataset can better reflect the anti-occlusion ability of methods. 

Our experiments employ mostly used metrics in facade parsing to evaluate the 
performances, including the class average accuracy (class avg.), total pixel accuracy (total acc.) 
and mean intersection-over-union (mean IoU). 

4.2 Implementation Details 
We implement the proposed architecture based on TensorFlow and train it on a single GPU 
with a mini-batch size of 2. The whole training process only takes several hours. We adopt the 
ResNet50 [32] pre-trained on ImageNet as the backbone and fine-tune the weights with facade 
data. Other parameters are initialized by Xavier. The Adam optimizer with a basic learning 
rate of 1e-4 and weight decay of 0.0001 is used to optimize the whole network. To make the 
model robust, we adopt some data augmentation techniques: random scaling (from 0.5 to 2.0), 
random cropping (512 × 512) and random horizontal flipping. The source code will be 
published at https://github.com/wohaiyo/RPCNet in the near future. 

4.3 Comparison with the State-of-the-art 

4.3.1 On ECP-occluded Dataset 
Experimental results on the ECP-occluded dataset are shown in Table 1. We mainly report the 
quantitative results of deep learning methods considering that these traditional methods 
perform poorly. Here, we compare with U-Net [18], which is popular in medical image 
segmentation and state-of-the-art semantic segmentation methods, such as ResNet50-FCN 
[32], PSPNet [20], Deeplabv3+ [21], and Pyramid ALKNet [26]. Our model consistently has 
better performance than these methods in all metrics. ResNet50-FCN [32] is a plain 
convolutional neural network architecture for semantic segmentation. It can only be able to 
perform pixel-wise classification in visible facade regions, which is difficult to deal with 
occlusions. Different from ResNet50-FCN, Deeplabv3+ [21] uses the atrous spatial pyramid 
pooling to obtain the context information, and Pyramid ALKNet [26] collects the long-range 
dependencies of deep features from the horizontal and vertical directions. DeepLabv3+ 
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achieves better results than Pyramid ALKNet since it captures detailed visible information 
using low-level features. Both of them achieve better performances than ResNet50-FCN, but 
they also cannot predict the true labels in occluded regions of facades correctly. In contrast, 
our method solves these problems and achieves better performance. By capturing the nonlocal 
context information and considering the repetitive patterns of facades, our method can 
generate the discriminative features and infer contents in occluded regions by RPCNet which 
learns the characteristics from man-made structures. 
 

Table 1. Quantitative comparisons (%) with state-of-the-art semantic segmentation methods on the 
ECP-occluded dataset. 

Method Class avg. Total acc. mean IoU 
UNet [18] 62.2 75.5 51.5 
ResNet50-FCN [32] 76.3 83.0 67.3 
PSPNet [20] 75.9 82.8 66.7 
DeepLabv3+ [21] 81.9 87.5 73.2 
Pyramid ALKNet [26] 80.7 86.2 71.8 
Ours 82.6 87.7 73.7 

 

4.3.2 On ENPC Art-deco Dataset 
On the ENPC Art-deco dataset, some facade images present real occlusions. We compare our 
method with previous state-of-the-art facade parsing methods and semantic segmentation 
methods. For fairness, the results of the facade parsing methods are from their original papers. 
Those networks for semantic segmentation are not trained and tested on this dataset. Here, we 
train them with the ENPC Art-deco dataset. 
 

Table 2. Quantitative comparisons (%) with state-of-the-art methods on the ENPC Art-deco dataset 
using the splits of ours. 

Method Class avg. Total acc. mean IoU 
Gadde et al. [8] 72.9 78.8 59.4 
Cohen et al. [11] 78.1 85.3 - 
Kozinski et al. [1] 83.7 88.8 - 
Cohen et al. [12] 84.0 88.3 - 
Autocontext [14] 84.8 89.0 73.5 
UNet [18] 77.8 85.7 68.8 
ResNet50-FCN [32] 86.2 89.4 79.2 
PSPNet [20] 84.9 88.9 77.8 
DeepLabv3+ [21] 89.3 92.0 83.2 
Pyramid ALKNet [26] 89.3 91.9 83.1 
Ours 89.9 92.3 83.8 

 
In this real dataset, we first compare with some traditional methods for facade parsing, and 

then compare with some segmentation methods mentioned in Table 1. Compared with the 
traditional method [1] which employs an MRF shape prior to parse occluded facades, we adopt 
an RPCNet to infer the occluded regions by referring to the repetitive patterns in visible 
regions. The grammar requires careful definition by users and heavy computational costs at 
the parsing stage. However, our RPCNet can learn the potential rules through training without 
complex definitions, and our model runs faster and achieves better accuracies (see Table 2). 
[12] used the symmetries and repetitions of facades, but the hard constraints, such as strict 
symmetry, may hurt the accuracies of parsing results. Because the constraint of symmetry is 
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not always met for many buildings. In contrast, our method decomposes the facade image into 
invisible and visible parts, and uses the visible repetitive patterns to infer the occluded 
contents which generally meets the structures of buildings and is also consistent with human 
reasoning. The experimental results in Table 2 demonstrate that our repetitive pattern 
completion is reasonable and effective. Furthermore, due to discriminative features generated 
by the proposed context aggregation module and occluded contents inferred by the RPCNet, 
our method outperforms state-of-the-art semantic segmentation methods in all metrics. 

Fig. 8 shows some visual comparisons with state-of-the-art methods. The accuracies of 
traditional methods are significantly lower than ours. Here, we present the visual results of the 
four deep learning-based approaches listed in Table 2. Different from the ECP-occluded 
dataset, the ENPC Art-deco dataset has real occlusions in front of building facades. The 
parsing results of ResNet50-FCN in visible facade regions look well, but terrible in occluded 
regions. This is because ResNet50-FCN cannot obtain structural information about facade 
elements from the appearances of occlusions. DeepLabv3+ and Pyramid ALKNet perform 
better than ResNet50-FCN using context information, but they fail in some serious occlusions. 
Specifically, the regular repetitions of the facade are broken and the shapes of windows and 
balconies are not maintained as rectangular. We can see that our method greatly improves the 
visual quality compared with state-of-the-art segmentation methods. Specifically, our method 
can encode the shapes and repetitive patterns of manmade structures into networks and solve 
these problems. Note that all of the parsing results are output directly from our model, without 
any post-processing. 
 

       

       
Input Image Ground Truth ResNet50-FCN 

[32] 
PSPNet [20] DeepLabv3+ 

[21] 
Pyramid 

ALKNet [26] 
Ours 

Fig. 8. Visual comparisons of facade parsing results on the ENPC Art-deco dataset. 
 

DeepFacade [5] does not provide the source code and facade parsing results. For comparing 
with them, we test our method with their data splits on the ENPC Art-deco dataset. In Table 3, 
the experimental results of DeepFacade are from their paper. The class average accuracy is not 
objective enough to evaluate the segmentation results of the facade images. Some labels, such 
as doors and walls, are extremely unbalanced on the dataset. Therefore, the total accuracy is a 
better choice to compare the performances of different methods. Even building facade images 
with occlusions are rarely seen in their test data, our method achieves improvements in total 
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accuracy and mean IoU, which illustrates that our model also has an advantage in parsing 
visible building facades. 

 
Table 3. Quantitative comparisons (%) with state-of-the-art methods on the ENPC Art-deco dataset 

using the dataset splits of DeepFacade [5]. 
Method Class avg. Total acc. mean IoU 

DeepFacade [5] 92.0 92.9 79.8 
Ours 90.3 93.4 84.9 

4.4 Ablation Study 
To further analyze the effect of the proposed context aggregation module and the repetitive 
pattern completion, we carry out ablation experiments on the ECP-occluded dataset and the 
ENPC Art-deco dataset. The baseline models are ResNet50-FCN and VGG16. As shown in 
Table 4, compared with the baseline model ResNet50-FCN, we adopt the repetitive pattern 
completion to determine the main occlusions and infer the contents using the regularities of 
repetitive patterns in visible parts. With only repetitive pattern completion, our model achieves 
a 2.2% improvement of mean IoU on the ECP-occluded dataset and a 1.2% improvement of 
mean IoU on the ENPC Art-deco dataset. Our context aggregation module can capture the 
structure information from multiple receptive fields. Our model with only context aggregation 
achieves better performances, a 6.1% improvement of mean IoU on the ECP-occluded dataset 
and a 4.4% improvement of mean IoU on the ENPC Art-deco dataset. Finally, with context 
aggregation and repetitive pattern completion, all metrics on the two datasets have 
improvements. These improvements mainly come from the layout regularization in occluded 
regions. To further show the benefits of the proposed key modules, we use VGG16 as a 
baseline model. Experiments in Table 4 demonstrate that the context aggregation module and 
the repetitive pattern completion both have significant improvements in all metrics. 

 
Table 4. Ablation study (%) of the proposed method. The results of the first and second rows are from 

the ECP-occluded dataset and the ENPC Art-deco dataset with ResNet50-FCN baseline model. The 
third and fourth rows are from the ECP-occluded dataset and the ENPC Art-deco dataset with the 

VGG16 baseline mode. “RP” means the repetitive pattern completion and “CA” means the proposed 
context aggregation module. 

Method Class avg. Total acc. mean IoU 
Baseline (ResNet50-FCN) 76.3 83.0 67.3 
+RP 79.0 84.7 69.5 
+CA 82.1 87.5 73.4 
+RP +CA 82.6 87.7 73.7 
Baseline (ResNet50-FCN) 86.2 89.4 79.2 
+RP 87.5 90.5 80.4 
+CA 89.6 92.2 83.6 
+RP +CA 89.9 92.3 83.8 
Baseline (VGG) 74.2 80.5 64.7 
+RP 77.6 83.2 67.5 
+CA 81.5 86.8 72.5 
+RP +CA 82.7 87.3 73.3 
Baseline (VGG) 84.9 88.1 76.1 
+RP 87.0 89.6 78.4 
+CA 88.9 91.6 82.1 
+RP +CA 89.3 91.6 82.2 
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Table 5. Ablation study (%) of the proposed method in occluded regions. We mainly report the IoU of 
the window, balcony and wall labels due to these labels occupy the most occluded regions. The results 
of the first and second rows are from the ECP-occluded dataset and the ENPC Art-deco dataset with 
ResNet50-FCN baseline model. The results of the third and fourth rows are from the ECP-occluded 
dataset and the ENPC Art-deco dataset with the VGG16 baseline model. “RP” means the repetitive 

pattern completion and “CA” means the proposed context aggregation module. 
Method Window Wall Balcony mean IoU 

Baseline (ResNet50-FCN) 38.3 74.2 45.7 52.8 
+RP 52.9 77.2 52.2 60.8 
+CA 56.7 82.5 62.5 67.2 
+RP +CA 59.7 83.0 62.6 68.4 
Baseline (ResNet50-FCN) 53.3 78.2 44.7 58.8 
+RP 66.2 82.0 55.4 67.9 
+CA 70.5 85.9 62.4 72.9 
+RP +CA 72.7 86.3 63.5 74.2 
Baseline (VGG) 27.2 69.6 32.6 43.1 
+RP 48.8 74.8 43.8 55.8 
+CA 53.9 81.5 57.7 64.4 
+RP +CA 58.2 82.5 61.0 67.2 
Baseline (VGG) 47.1 75.1 39.8 54.0 
+RP 63.2 79.9 54.0 65.7 
+CA 67.3 83.9 57.9 69.7 
+RP +CA 69.2 84.2 61.1 71.5 

 
Because the window, balcony and wall labels occupy most of the occluded regions, we also 

report the results of these three classes. In Table 5, we can see that all the metrics are improved 
on both datasets significantly with our specifically designed context aggregation module. 
Furthermore, our final model achieves the best performance on these three labels and mean 
IoU with a context aggregation module and repetitive pattern. 

With the context aggregation module, our model has achieved significant improvements, 
but the layouts of occluded regions still have problems, resulting in lower accuracies of 
window and balcony labels. To generate regular element structures and orderly layouts of 
facades, which are very essential for facade parsing and its downstream applications, such as 
image inpainting and 3D semantic modeling. We use the repetitive pattern completion branch 
to refine the coarse facade parsing results. As shown in Tabel 5, with only the repetitive pattern 
completion, the metrics of window label are improved significantly in the first row. More 
importantly, the visual results are much better than those of methods simply learning to fit the 
data, which makes our method have much higher practical value. 
 

Table 6. Quantitative comparisons with state-of-the-art methods on the ECP-occluded dataset under 
different occluded ratios. 

Method 20~30% 30~40% 40~50% 50~60% 
ResNet50-FCN [32] 78.2 74.7 71.2 67.3 
PSPNet [20] 77.2 73.6 70.4 66.7 
DeepLabv3+ [21] 80.4 77.9 75.6 73.2 
Pyramid ALKNet [26] 80.7 77.7 75.5 71.8 
Ours 80.9 78.2 76.3 73.7 
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Incomplete 

repetitive patterns 
Iteration = 1 Iteration = 3 Iteration = 5 Ground Truth 

Fig. 9. Visual completion process of the repetitive pattern using RPCNet. 
 

To further demonstrate the effectiveness of the proposed RPCNet, we evaluate the 
performance of the deep learning-based methods on the ECP-occluded dataset of different 
occluded ratios. In Table 6, with the occluded ratio increasing, the performance of some 
state-of-the-art methods, like DeepLabv3+ and Pyramid ALKNet, reduces significantly. Our 
method outperforms the others under different occluded ratios, especially under large ratios. 
We visualize some challenging completed repetitive patterns in Fig. 9. In the first row, the 
visible parts are not regular due to the arbitrary occlusions, and our RPCNet can reason for the 
layouts of facades and refine the shape of elements. In addition, the third row shows the more 
challenging case in which the input image is almost completely occluded. We can see that the 
RPCNet has difficulty generating reasonable structures even with three iterations. While using 
more iterations, the facade structures become better through the visible and reliable parts. 

As it can be seen from Table 7, the proposed deep model with context aggregation module 
spends about 61ms to process a 512 × 512 image. The time cost increases by 5ms per iteration 
of RPCNet. Moreover, we also show the cross-entropy loss curves in the three different 
training stages. As shown in Fig. 10, the losses of training the RPCNet using synthetic 
repetitive patterns are higher than the others significantly. We apply the pre-trained model on 
real repetitive patterns of RPCNet and real facade datasets of multi-task learning. The 
proposed method converges quickly. 
 
Table 7. The time cost per image of RPCNet with different iterations. “CA” means the proposed context 

aggregation module. 
Method CA iteration=1 iteration=3 iteration=5 

Time[ms] 61 67 76 86 
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Fig. 10. The loss curves during training RPCNet, fine-tuning RPCNet and training multi-tasks. 

 

4.5 Applications 
Facade parsing results have many potential applications. Here, we apply our method in image 
inpainting and 3D semantic modeling and obtain promising results. 
 

   

   
Input Image W/o Parsing Map With Parsing Map 

Fig. 11. Visual comparisons of inpainting results without/with the 
guidance of facade parsing results. 

 

4.5.1 Image Inpainting 
Occlusions heavily affect the appearances and structures of facades. It is inevitable to remove 
occlusions from facade images. Since we cannot obtain the ground truth of occluded regions 
on the ENPC Art-deco dataset, we use the clean ECP dataset to train the inpainting model and 
test on real images of the ENPC Art-deco dataset. Different from [38], we use the parsing 
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results to guide the facade image inpainting process. As shown in Fig. 11, compared with the 
inpainting results without the guidance of parsing results, our results have a regular layout in 
occluded regions of the facade. For example, the shape and texture of the windows are more 
realistic. The visual inpainting comparisons further demonstrate that our method achieves 
good facade parsing results. 
 

4.5.2 3D Semantic Modeling 
The parsing results of the facade image can be straightforwardly used to build procedural 
modeling. As shown in Fig. 12, a facade image is fed into the proposed architecture to 
generate the corresponding parsing result. We encode the parsing result following a set of 
CGA rules in CityEngine [39]. In detail, we split the procedural modeling into layers in the 
vertical direction from bottom to top. In each layer, the facade is further subdivided into rows 
and columns that encoded by CGA rules. The solid and wireframe 3D semantic reconstruction 
results are shown in Fig. 12. 
 

   

   
Input Image Solid 3D 

Reconstruction 
Wireframe 3D 
Reconstruction 

Fig. 12. 3D semantic modeling with our parsing result. 
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5. Conclusion 
In this paper, for the first time, we presented an end-to-end deep network for facade parsing 
with serious occlusions. After decomposing a facade image into visible and invisible parts by 
using occlusion reasoning, the network adopts the context aggregation module to capture 
nonlocal information for the coarse semantic segmentation of visible parts. With the proposed 
repetitive pattern completion branch, the contents in occluded regions are well inferred by 
referring to the regularity in the visible part. The final parsing results are merged by a fusion 
module using visible and invisible parts. The overall end-to-end model is trained via 
multi-task learning. 

Comprehensive experiments and ablation studies on real and synthetic datasets demonstrate 
the outstanding performance of the proposed method and its key modules. Moreover, we 
further applied the facade parsing results to facade image inpainting and 3D semantic 
modeling of buildings to verify their practical values. 
    Our method also has its limitations. Since the RPCNet relies too much on repetitive patterns, 
it tends to fail in some strange and extreme cases, such as buildings with irregular elements 
and layouts. In the future, we plan to handle these challenging scenes by investigating domain 
knowledge of building structure and more efficient network structure. 
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