• Title/Summary/Keyword: Viscous friction coefficient

Search Result 41, Processing Time 0.032 seconds

Effect of variable viscosity on combined forced and free convection boundary-layer flow over a horizontal plate with blowing or suction

  • Mahmoud, Mostafa A.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2007
  • The effects of variable viscosity, blowing or suction on mixed convection flow of a viscous incompressible fluid past a semi-infinite horizontal flat plate aligned parallel to a uniform free stream in the presence of the wall temperature distribution inversely proportional to the square root of the distance from the leading edge have been investigated. The equations governing the flow are transformed into a system of coupled non-linear ordinary differential equations by using similarity variables. The similarity equations have been solved numerically. The effect of the viscosity temperature parameter, the buoyancy parameter and the blowing or suction parameter on the velocity and temperature profiles as well as on the skin-friction coefficient and the Nusselt number are discussed.

  • PDF

SORET AND CHEMICAL REACTION EFFECTS ON THE RADIATIVE MHD FLOW FROM AN INFINITE VERTICAL POROUS PLATE

  • MALAPATI, VENKATESWARLU;DASARI, VENKATA LAKSHMI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.1
    • /
    • pp.39-61
    • /
    • 2017
  • In this present article, we analyzed the heat and mass transfer characteristics of the nonlinear unsteady radiative MHD flow of a viscous, incompressible and electrically conducting fluid past an infinite vertical porous plate under the influence of Soret and chemical reaction effects. The effect of physical parameters are accounted for two distinct types of thermal boundary conditions namely prescribed uniform wall temperature thermal boundary condition and prescribed heat flux thermal boundary condition. Based on the flow nature, the dimensionless flow governing equations are resolved to harmonic and non harmonic parts. In particular skin friction coefficient, Nusselt number and Sherwood number are found to evolve into their steady state case in the large time limit. Parametric study of the solutions are conducted and discussed.

A Study on the Dynamic Characteristics of Counter Balance Valve for High Load (고부하용 카운터 밸란스 밸브의 동적 특성에 관한 연구)

  • Sung, Won-Jun;Chung, Kwang-Sik;Lee, Seung-Hyun
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.68-74
    • /
    • 2002
  • In this study, the dynamic characteristics of the spool type counter balance valve are studied. The nonlinear governing differential eguations are derived. Routh-Hurwitz criterion is used to characterize the linearized eguations. Static and dynamic experiments are carried out for the determination of parameters that are necessary for the analysis and the stability of the system.

Analytical Study of Position Control Characteristics of the Variable Reluctance Pulse motor (펄스전동기의 위치제어특성에 관한 해석적 연구)

  • 이윤종;장세훈;이용범
    • 전기의세계
    • /
    • v.28 no.1
    • /
    • pp.59-66
    • /
    • 1979
  • The linearized models on per for mance dynamics of the pulse motor have been already proposed by many others. These models exhibit certain advantages of their own because of their simple formulation, but in many cases the models are proved to be inadequate for further accurate analysis of the motor dynamics, owing to impractical and rather rough assumptions in the derivation. In this study a dynamic state transition model is induced, using the equivalent circuit obtained from the operating principle of the variable reluctance pulse motor which turns out to be nonlinear equation. This nonlinear dynamic state equation is numerically analysed by the use of UNIVAC System/3(OS/3) digital computer at hand. In the course of the dynamic analysis of the performance characteristics of a testing motor, dependance of the inertia of rotor and load, the coefficient of viscous friction between rotor and housing, and the winding resistance of the stator is discussed and a comparative study of the machine constants is carried on as related to the design problem of the motor.

  • PDF

Sound Attenuation Coefficients and Biogenic Gas Content in the Offshore Surficial Sediments Around the Korean Peninsula (韓半島 周邊海域 海底 表層蓄積物 音波 空曠係數와 생物起源 氣滯含量)

  • 김한준;덕봉철
    • 한국해양학회지
    • /
    • v.25 no.1
    • /
    • pp.26-35
    • /
    • 1990
  • Sound velocities and attenuation coefficients of marine surface sediments were calculated from insitu acoustic experiments on 4 nearshore areas off Pohang, Pusan Yeosu, and Kunsan around the Korean Peninsula. The relationship between these values and physical properties of sediments was examined and attenuation mechanism was analysed using the estimated gas content. Sound velocities and attenuation coefficients ranging from 1470 to 1616 m/sec and 0.0565 to 0.6604 dB/kHz-m, respectively, are well related to sediment types. The attenuation coefficient is maximum in coarse silts, and the sound velocity increases with density. The gas content estimated less than 8 ppm increases with the decreasing sediment grain size. When the sediment size is greater than fine sand, sound attenuation is mostly due to friction losses, and probably negligible viscous loss remains unchanged with the varying physical properties of sediments. The maximum attenuation in coarse silts result from both friction loss and cohesion of finer sediments between the contacts of silt grains. The cohesion begins to be the dominant dissipative process with decreasing grain size from medium and fine silts.

  • PDF

Thermal diffusion and diffusion thermo effects on an unsteady heat and mass transfer magnetohydrodynamic natural convection Couette flow using FEM

  • Raju, R. Srinivasa;Reddy, G. Jithender;Rao, J. Anand;Rashidi, M.M.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.349-362
    • /
    • 2016
  • The numerical solutions of unsteady hydromagnetic natural convection Couette flow of a viscous, incompressible and electrically conducting fluid between the two vertical parallel plates in the presence of thermal radiation, thermal diffusion and diffusion thermo are obtained here. The fundamental dimensionless governing coupled linear partial differential equations for impulsive movement and uniformly accelerated movement of the plate were solved by an efficient Finite Element Method. Computations were performed for a wide range of the governing flow parameters, viz., Thermal diffusion (Soret) and Diffusion thermo (Dufour) parameters, Magnetic field parameter, Prandtl number, Thermal radiation and Schmidt number. The effects of these flow parameters on the velocity (u), temperature (${\theta}$) and Concentration (${\phi}$) are shown graphically. Also the effects of these pertinent parameters on the skin-friction, the rate of heat and mass transfer are obtained and discussed numerically through tabular forms. These are in good agreement with earlier reported studies. Analysis indicates that the fluid velocity is an increasing function of Grashof numbers for heat and mass transfer, Soret and Dufour numbers whereas the Magnetic parameter, Thermal radiation parameter, Prandtl number and Schmidt number lead to reduction of the velocity profiles. Also, it is noticed that the rate of heat transfer coefficient and temperature profiles increase with decrease in the thermal radiation parameter and Prandtl number, whereas the reverse effect is observed with increase of Dufour number. Further, the concentration profiles increase with increase in the Soret number whereas reverse effect is seen by increasing the values of the Schmidt number.

Effect of Free Surface Based on Submergence Depth of Underwater Vehicle

  • Youn, Taek-Geun;Kim, Min-Jae;Kim, Moon-Chan;Kang, Jin-Gu
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.83-90
    • /
    • 2022
  • This paper presents the minimum submergence depth of an underwater vehicle that can remove the effect of free surface on the resistance of the underwater vehicle. The total resistance of the underwater vehicle in fully submerged modes comprises only viscous pressure and friction resistances, and no wave resistance should be present, based on the free surface effect. In a model test performed in this study, the resistance is measured in the range of 2 to 10 kn (1.03-5.14 m/s) under depth conditions of 850 mm (2.6D) and 1250 mm (3.8D), respectively, and the residual resistance coefficients are compared. Subsequently, resistance analysis is performed via computational fluid dynamics (CFD) simulation to investigate the free surface effect based on various submergence depths. First, the numerical analysis results in the absence of free surface conditions and the model test results are compared to show the tendency of the resistance coefficients and the reliability of the CFD simulation results. Subsequently, numerical analysis results of submergence depth presented in a reference paper are compared with the model test results. These two sets of results confirm that the resistance increased due to the free surface effect as the high speed and depth approach the free surface. Therefore, to identify a fully submerged depth that is not affected by the free surface effect, case studies for various depths are conducted via numerical analysis, and a correlation for the fully submerged depth based on the Froude number of an underwater vehicle is derived.

Performance and heat transfer analysis of turbochargers using numerical and experimental methods

  • Pakbin, Ali;Tabatabaei, Hamidreza;Nouri-Bidgoli, Hossein
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.523-532
    • /
    • 2022
  • Turbocharger technology is one of the ways to survive in a competitive market that is facing increasing demand for fuel and improving the efficiency of vehicle engines. Turbocharging allows the engine to operate at close to its maximum power, thereby reducing the relative friction losses. One way to optimally understand the behavior of a turbocharger is to better understand the heat flow. In this paper, a 1.7 liter, 4 cylinder and 16 air valve gasoline engine turbocharger with compressible, viscous and 3D flow was investigated. The purpose of this paper is numerical investigation of the number of heat transfer in gasoline engines turbochargers under 3D flow and to examine the effect of different types of coatings on its performance; To do this, modeling of snail chamber and turbine blades in CATIA and simulation in ANSYS-FLUENT software have been used to compare the results of turbine with experimental results in both adiabatic and non-adiabatic (heat transfer) conditions. It should be noted that the turbine blades are modeled using multiple rotational coordinate methods. In the experimental section, we simulated our model without coating in two states of adiabatic and non-adiabatic. Then we matched our results with the experimental results to prove the validation of the model. Comparison of numerical and experimental results showed a difference of 8-10%, which indicates the accuracy and precision of numerical results. Also, in our studies, we concluded that the highest effective power of the turbocharged engine is achieved in the adiabatic state. We also used three types of SiO2, Sic and Si3N4 ceramic coatings to investigate the effect of insulating coatings on turbine shells to prevent heat transfer. The results showed that SiO2 has better results than the other two coatings due to its lower heat transfer coefficient.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.

The Influence of Plasma Surface Modification on Frictional Property of Natural Rubber Vulcanizates

  • Nah, C.;Kim, D.H.;Mathew, G.;Jeon, D.J.;Jurkowski, B.;Jurkowska, B.
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.12-22
    • /
    • 2004
  • The plasma surface modification of natural rubber vulcanizate was carried out using chlorodifluoromethane in a radio-frequency (13.56 MHz) electrodeless bell type plasma reactor. The modification was qualitatively assessed by Fourier transform infrared spectroscopy. The frictional force of the plasma-treated surface was found to decrease with the time of plasma treatment. An increase in the surface polarity, as evidenced by the decrease in contact angle of a sessile drop of water and ethylene glycol on the natural rubber vulcanizate surface, was noted with the plasma modification. In the case of similar plasma treatment of glass surface, only a reduction in the polarity was observed. The use of geometric and harmonic mean methods was found to be useful to evaluate the London dispersive and specific components of surface free energy. Irrespective of the method used for evaluation, an increasing trend in the surface free energy was noted with increasing plasma treatment time. However, the harmonic mean method yielded comparatively higher values of surface free energy than the geometric mean method. The plasma surface modification was found to vary the frictional coefficient by influencing the interfacial, hysteresis and viscous components of friction in opposing dual manners.