• Title/Summary/Keyword: Viscous friction

검색결과 181건 처리시간 1.454초

A practical identification method for robot system dynamic parameters

  • Kim, Sung-wun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.705-710
    • /
    • 1989
  • A practical method of identifying the inertial parameters, viscous friction and Coulomb friction of a robot is presented. The parameters in the dynamic equations of a robot are obtained from the measurements of the command voltage and the joint position of the robot. First, a dynamic model of the integrated motor and manipulator is derived. An off line parameter identification procedure is developed and applied to the University of Minnesota Direct Drive Robot. To evaluate the accuracy of the parameters the dynamic tracking of robot was tested. The trajectory errors were significantly reduced when the identified dynamic parameters were used.

  • PDF

로보트시스템 동적 변수의 실용적인 추정 방법 (A Practical Identification Method for Robot System Dynamic Parameters)

  • Kim, Sungkwun
    • 대한전기학회논문지
    • /
    • 제39권7호
    • /
    • pp.765-772
    • /
    • 1990
  • A practical method of identifying the inertial parameters, viscous friction and Coulomb friction of a robot is presented. The parameters in the dynamic equations of a robot are obtained from the measurements of the command voltage and the joint position of the robot. First, a dynamic model of the integrated system of the mainpulator and motor is derived. An off-line parameter identification procedure is developed and applied to the University of Minnesota Direct Drive Robot. To evaluate the accuracy of the parameters the dynamic tracking of the robot was tested. The trajectroy errors were significantly reduced when the identified dynamic parameters were used.

  • PDF

저전력소비, 고출력, 연발형 마이크로 분사기의 설계, 제작 및 성능 시험 (Design, Fabrication and Performance Testing of a High-impulse, Low-Power Microthruster using Liquid Propellant with High Viscous Fluid Plug)

  • 김상욱;강태구;조영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.59-63
    • /
    • 2001
  • A high-impulse, low-power, continuous-shot microthruster has been developed using low boiling temperature liquid-propellant with high viscous fluid-plug. The viscous friction force of the fluid-plug increases the blast pressure and the low boiling temperature liquid-propellant is intended to reduce input power consumption. The three-layer microthruster has been fabricated by surface micromachining as well as bulk micromachining in the size of $7{\times}13{\times}1.5mm^{3}$. A continuous output impulse bit of $6.4{\times}10^{-8}N{\cdot}sec$ has been obtained from the fabricated microthruster using perfluoro normal hexane (FC72) propellant and oil plug, resulting in about ten times increase of the impulse bit using one hundredth electrical input energy compared to the conventional continuous microthruster.

  • PDF

축소 모델을 이용한 마찰력의 마찰력의 온라인 추정 및 보상기법 (A friction compensation scheme based on the on-line estimation with a reduced model)

  • 최재일;양상식
    • 제어로봇시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.174-180
    • /
    • 1996
  • The friction is one of the nonlinearities to be considered in the precise position control of a system which has electromechanical components. The friction has complicated nonlinear characteristics and depends on the velocity, the position and the time. The conventional fixed friction compensator and the controller based on linear control theory may cause the steady state position error or oscillation. The plant to be controlled in this study is a positioning system with a linear brushless DC motor(LBLDCM). The system behaves like a 4th-order model including the compliance and the friction. In this study, the plant model is simplified to a 2nd-order model to reduce the computation in on- line estimation. Also, to reduce the computation time, only the friction is estimated on-line while the mass and the viscous damping coefficient are fixed to the values obtained from off-line estimation. The validity of the proposed scheme is illustrated with the computer simulation and the experiment where the friction is compensated by using the estimation.

  • PDF

모델 참조 제어 방법에 의한 새로운 마찰 보상 방법 (New friction compensation method by model reference approach)

  • 마진석;이무영;변승완
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.492-495
    • /
    • 1997
  • Integral type system is that a system is represented by a proper rational function. In this paper, novel control scheme based on model reference approach is proposed for integral type system. The proposed scheme compensates various undesirable effects of the system. In especially, the proposed scheme applied to DC servo control system, analyzed its control characteristic. Performances of the proposed system show excellent control characteristics; complete compensation of the undesirable nonlinear friction and load viscous, For proving realistic validities, LOS(Line Of Sight) stabilization system which has typically many nonlinear effects is experimented. After executing the computer simulation in "MATLAB", then the results are compared with the experiments. The results are very similar in theoretical study and the proposed control scheme is successfully verified. verified.

  • PDF

변위비례식 마찰댐퍼 시스템의 진동해석 (Vibration Analysis of an Amplitude Proportional Friction Damper System)

  • 박동훈;최명진
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.171-179
    • /
    • 2003
  • An Amplitude Proportional Friction Damper (APFD) is considered in order to improve the characteristics of Coulomb friction damper. The frictional force is proportional to the amplitude in APFD system and the system is non-linear as is Coulomb damper system. A free vibration analysis on the 1-DOF system has made to demonstrate the characteristics of the APFD system. The results show that APFD system has similar damping characteristics to the viscous damper. Also, the solution for the response of a base-excited system with APFD is developed through the application of a Fourier series to represent the frictional force of APFD. It is assumed that no stick-slips occur during any portion of the steady-state oscillation.

Dry friction losses in axially loaded cables

  • Huang, Xiaolun;Vinogradov, Oleg G.
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.330-344
    • /
    • 1996
  • A model of a cable comprising interacting wires with dry friction forces at the interfaces is subjected to a quasi-static cyclic loading. The first cycle of this process, comprising of axial loading, unloading and reloading is investigated analytically. Explicit load-elongation relationships are obtained for all of the above phases of the cycle. An expression for the hysteretic losses is also obtained in an explicit form. It is shown that losses are proportional to the third power of the amplitude of the oscillating axial force, and are in inverse proportion to the interwire friction forces. The results obtained are used to introduce a model of a cable as a solid rod with an equivalent stiffness and damping properties of the rod material. It is shown that the stiffness of the equivalent rod is weakly nonlinear, whereas the viscous damping coefficient is proportional to the amplitude of the oscillation. Some numerical results illustrating the effect of cable parameters on the losses are given.

고속 개폐 시뮬레이션을 위한 진공 회로차단기의 동적 모델 및 해석 (Dynamic Model and Analysis of a Vacuum Circuit Breaker Mechanism for High-Speed Closing and Opening Simulations)

  • 안길영;김수현
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.163-170
    • /
    • 2002
  • The dynamic model of a high-speed vacuum circuit breaker mechanism with spring-actuated cam and linkage is derived to simulate the high-speed closing and opening operations. Its validation for an analysis of high-speed motion behavior is checked through experiments. The characteristics of the friction on the camshaft are investigated using the nonlinear pendulum experiment. The parameters of the friction model are estimated using the optimization technique. The analysis exhibits that the friction of the pendulum depends on stick-slip, Stribeck effect and viscous damping. Comparing simulation results with actual responses using a high-speed camera, the appropriateness of derived dynamic models for the rapid closing and opening operations is shown. The spring motion, which has much influence on the closing responses, is observed.

범프 마찰을 고려한 공기포일베어링의 성능해석 (Performance Analysis of Air Foil Bearings with Bump Friction)

  • 김영철;이동현;김경웅
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.803-809
    • /
    • 2005
  • This paper presents the theoretical model to investigate the effect of Coulomb damping in the sub-structure of a foil bearing. Foil deflection is restricted by friction of bumps. Equivalent viscous damping of the bump foils is derived from the Coulomb friction. Dynamic equation of the bumps is constituted by stiffness and damping terms. This point give the difference from Heshmat's frictionless and simple compliance bump model. The fluid is modeled with the compressible Reynolds equation. A perturbation approach is used to determine the static and dynamic performance of the bearing from the coupled fluid-structural model. The analysis result shows that the static and dynamic performance is enhanced by bump friction. This analysis technique would be extended to development of a high performance bearing.

  • PDF

범프마찰을 고려한 공기포일베어링의 성능해석 (Performance Analysis of Air Foil Bearings with Bump Friction)

  • 김영철;이동현;김경웅
    • 한국유체기계학회 논문집
    • /
    • 제9권1호
    • /
    • pp.47-55
    • /
    • 2006
  • This paper presents the theoretical model to investigate the effect of Coulomb damping in the sub-structure of a foil bearing. Foil deflection is restricted by friction of bumps. Equivalent viscous damping of the bump foils is derived from the Coulomb friction. Dynamic equation of the bumps is constituted by stiffness and damping terms. This point give the difference from Heshmat's frictionless and simple compliance bump model. The fluid is modeled with the compressible Reynolds equation. A perturbation approach is used to determine the static and dynamic performance of the bearing from the coupled fluid-structural model. The analysis result shows that the static and dynamic performance is enhanced by bump friction. This analysis technique would be extended to development of a high performance bearing.