• Title/Summary/Keyword: Viscous Interaction

Search Result 179, Processing Time 0.023 seconds

The influence of the coupling effect of physical-mechanical fields on the forced vibration of the hydro-piezoelectric system consisting of a PZT layer and a viscous fluid with finite depth

  • Zeynep Ekicioglu, Kuzeci;Surkay D., Akbarov
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.247-263
    • /
    • 2023
  • The paper deals with the study of the mechanical time-harmonic forced vibration of the hydro-piezoelectric system consisting of the piezoelectric plate and compressible viscous fluid with finite depth. The exact equations of motion of the theory of linear electro-elasticity for piezoelectric materials are employed for describing the plate motion, however, the fluid flow is described by employing the linearized Navier-Stokes equations for a compressible (barotropic) viscous fluid. The plane-strain state in the plate and the plane flow of the fluid are considered and the corresponding mathematical problems are solved by employing the Fourier transform with respect to the space coordinate which is on the coordinate axis directed along the platelying direction. The expressions of the corresponding Fourier transform are determined analytically, however, the inverse transforms are found numerically. Numerical results on the interface pressure and the electrical potential are obtained for various PZT materials and these results are discussed. According to these results, in particular, it is established that the electromechanical coupling effect can significantly decrease the interface pressure.

Development of a Computational Method of 3-D Unsteady Incompressible Flow in Turbomachinery (터보기계내의 3차원 비정상 비압축성 유동계산방법의 개발)

  • Kim, Bbong-Kyun;Park, Jae-In;Joo, Won-Gu;Cho, Kang-Rae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.57-63
    • /
    • 1999
  • The flow through multistage turbomachinery is affected by the interaction between a rotor and a stator. The interaction is due to the inviscid potential effect and viscous effect between closely spaced rotor and stator airfoils. Three-dimensional, unsteady, incompressible Navier-Stokes equations with a standard $k-{\epsilon}$ model are solved using a non-staggered grid system. This method is applied to the flow through a multistage compressor measured by Stauter et al. The results have shown strong interaction between the rotating and stationary flow field. The decay of rotor wake and the pressure profiles agree very well with experimental data. The wake produced by rotor causes unsteady pressure on the surface of a stator. The rotor/stator interaction produces the unsteady pressure force on the rotor and stator blades.

  • PDF

Two-Dimensional Flow Behavior Through a Stage of an Axial Compressor (축류 압축기내의 2차원 유동 특성)

  • Hong, Seong-Hun;Baek, Je-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2561-2571
    • /
    • 1996
  • The flow in the turbomachinery is very unsteady due to the stator-rotor interaction. It has been indicated that the stator-rotor interaction has three distinct causes of unsteadiness: that is, the viscous vortex shedding, wake rotor interaction and potential stator-rotor interaction. In this paper, the mechanism of unsteady potential interaction and wake interaction in the stator-rotor stage flow is numerically investigated in two-dimensional view point. The numerical technique used is the upwind scheme of Van Leer's Flux Vector Splitting(FVS) and cubic spline interpolation is applied on zonal interface. Then, the flow field of a compressor stage composed of NACA 65410 is analyzed. Flow fields are found to be simulated reasonably by this method and the sensitivity due to back-pressure variation is more stronger than rotor-velocity variation.

Soil interaction effects on the performance of compliant liquid column damper for seismic vibration control of short period structures

  • Ghosh, Ratan Kumar;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.89-105
    • /
    • 2008
  • The paper presents a study on the effects of soil-structure-interaction (SSI) on the performance of the compliant liquid column damper (CLCD) for the seismic vibration control of short period structures. The frequency-domain formulation for the input-output relation of a flexible-base structure with CLCD has been derived. The superstructure has been modeled as a linear, single degreeof-freedom (SDOF) system. The foundation has been considered to be attached to the underlying soil medium through linear springs and viscous dashpots, the properties of which have been represented by complex valued impedance functions. By using a standard equivalent linearization technique, the nonlinear orifice damping of the CLCD has been replaced by equivalent linear viscous damping. A numerical stochastic study has been carried out to study the functioning of the CLCD for varying degrees of SSI. Comparison of the damper performance when it is tuned to the fixed-base structural frequency and when tuned to the flexible-base structural frequency has been made. The effects of SSI on the optimal value of the orifice damping coefficient of the damper has also been studied. A more convenient approach for designing the damper while considering SSI, by using an established model of a replacement oscillator for the structure-soil system has also been presented. Finally, a simulation study, using a recorded accelerogram, has been carried out on the CLCD performance for the flexible-base structure.

A Study on Viscous Flow around a Pipeline between Parallel Walls by the Numerical Simulation (수치 시뮬레이션을 통한 평판내 파이프라인 주위의 점성유동 연구)

  • Kwag, Seung-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.473-478
    • /
    • 2003
  • Numerical study was made on the flow characteristics around a circular pipeline between parallel walls. The incompressible Navier-Stokes equations were solved by using a third-order upwind differential scheme. When the distance near a wall is small enough, the vortex shedding is almost completely suppressed because of the interaction with the wall boundary layer separation. This study aims to clarify the characteristics of the vortex shedding regime as the body approaches a wall as Reynolds number varies. The feature of separated vorticity dynamics is analyzed at different conditions with particular attention to the interaction between the pipeline wake and the induced separation on the plane walls.

Design of maximum lift airfoil in viscous, compressible flow (점성, 압축성을 고려한 최대양력 익형설계)

  • 손병진;맹주성;최상경;조기현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-115
    • /
    • 1988
  • A numerical procedure for determining the airfoil shape that maximizes the lift is presented. The structure of the flow field is calculated by iteratively coupling potential flow and boundary analysis using the viscous-inviscid interaction method. The potential flow field is obtained by the vortex panel method and boundary layer flow is analyzed by means of integral approximation method which is capable of handling the laminar, transition and turbulent flow regimes. As the result of this study, it is found that the calculated flow regimes have good agreement with the existing experimented data. Davidon-Fletcher-Powell method and Augmented Lagrange Multiplier method are used for the optimal techniques. NACA 23012, NACA 65-3-21, NACA 64-2-415, NACA 64-2-A215 airfoils are used for determining the optimal airfoil shapes as a basic and compensate airfoils. Optimal design showed that the lift coefficients are increased by 17.4% at M$_{0}$=0.2 and 29% at M$_{0}$=0.3, compared with those of basic airfoil.oil.

Dynamic response of a lined tunnel with transmitting boundaries

  • Fattah, Mohammed Y.;Hamoo, Mohammed J.;Dawood, Shatha H.
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.275-304
    • /
    • 2015
  • The objective of this paper is to investigate the validity of transmitting boundaries in dynamic analysis of soil-structure interaction problems. As a case study, the proposed Baghdad metro line is considered. The information about the dimensions and the material properties of the concrete tunnel and surrounding soil were obtained from a previous study. A parametric study is carried out to investigate the effect of several parameters including the peak value of the horizontal component of earthquake displacement records and the frequency of the dynamic load. The computer program (Mod-MIXDYN) is used for the analysis. The numerical results are analyzed for three conditions; finite boundaries (traditional boundaries), infinite boundaries modelled by infinite elements (5-node mapped infinite element) presented by Selvadurai and Karpurapu, 1988), and infinite boundaries modelled by dashpot elements (viscous boundaries). It was found that the transmitting boundary absorbs most of the incident energy. The distinct reflections observed for the "fixed boundaries" disappear by using "transmitted boundaries". This is true for both cases of using viscous boundaries or mapped infinite elements. The type and location of the dynamic load represent two controlling factors in deciding the importance of using infinite boundaries. It was found that the results present significant differences when earthquake is applied as a base motion or a pressure load is applied at the surface ground. The peak value of the vertical displacement at nodes A, B, E and F (located at the tunnel's crown and side walls, and at the surface above the tunnel and at the surface 6.5 m away from tunnel's centre respectively) increases with the frequency of the surface pressure load for both cases 1 and 2 (traditional boundaries and mapped infinite elements respectively) while it decreases for case 3 (viscous boundaries). The modular ratio Ec/Es (modulus of elasticity of the concrete lining to that of the surrounding soil) has a considerable effect on the peak value of the horizontal displacement at node B (on the side wall of the tunnel lining) increase about (17.5) times, for the three cases (1, 2, and 3).

An Overview of Liquid Spray Modeling Formed by High-Shear Nozzle/Swirler Assembly

  • Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.726-739
    • /
    • 2003
  • A multi-dimensioanl model is being increasingly used to predict the thermo-flow field in the gas turbine combustor. This article addresses an integrated survey of modeling of the liquid spray formation and fuel distribution in gas turbine with high-shear nozzle/swirler assembly. The processes of concern include breakup of a liquid jet injected through a hole type orifice into air stream, spray-wall interaction and spray-film interaction, breakup of liquid sheet into ligaments and droplet,5, and secondary droplet breakup. Atomization of liquid through hole nozzle is described using a liquid blobs model and hybrid model of Kelvin-Helmholtz wave and Rayleigh-Taylor wave. The high-speed viscous liquid sheet atomization on the pre-filmer is modeled by a linear stability analysis. Spray-wall interaction model and liquid film model over the wall surface are also considered.