• 제목/요약/키워드: Viscous Flow Analysis

검색결과 409건 처리시간 0.031초

저속익형의 공기역학적 성능예측의 한 방법 (A method for predicting the aerodynamic performance of low-speed airfoils)

  • 유능수
    • 대한기계학회논문집B
    • /
    • 제22권2호
    • /
    • pp.240-252
    • /
    • 1998
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the low speed airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid compressible flow analysis. The Goradia integral method is adopted for the boundary layer analysis of the laminar and turbulent flows. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. The analysis of the separated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered by expressing its geometry using the formula of Summey and Smith when no separation occurs. The computational efficiency is verified by comparing the computational results with experimental data and by the shorter execution time.

삼각형 요소의 형상 충전 및 격자 세분화를 이용한 붕괴하는 물 댐의 유한 요소 해석 (Finite Element Analysis of Collapse of a Water Dam Using Filling Pattern Technique and Adaptive Grid Refinement of Triangular Elements)

  • 김기돈;양동열;정준호
    • 대한기계학회논문집B
    • /
    • 제28권4호
    • /
    • pp.395-405
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. Using the proposed numerical technique, the collapse of a water dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions with respect to time have been compared with the reported experimental results.

형상 충전 및 격자 세분화를 이용한 삼차원 자유 표면 유동의 유한 요소 해석 (Three Dimensional Finite Element Analysis of Free Surface Flow Using Filling Pattern Technique and Adaptive Grid Refinement)

  • 김기돈;양동열;정준호
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1348-1358
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation fur flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among seven filling patterns at each tetrahedral control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. The collapse of a water dam and the filling of a fluidity spiral have been analyzed. The numerical results have been in good agreement with the experimental results and the efficiency of the adaptive grid refinement and filling pattern techniques have been verified.

CFD에 의한 자세변화가 큰 선박의 저항성능 해석 (Analysis of Resistance Performance of a Ship having a Large Attitude based on CFD)

  • 김현수;박동우;양영준
    • 해양환경안전학회지
    • /
    • 제25권7호
    • /
    • pp.961-967
    • /
    • 2019
  • 본 연구에서는 큰 침하량과 동적트림을 가지는 선박에 대하여 전산유체역학(CFD)을 기반으로 하여 효율적인 저항성능 추정 방법을 제시하였다. 본 방법에서 효율적이라 함은 점성 유동해석 이전에 비 점성 유동해석의 침하량과 동적트림 결과를 이용하여 선박의 큰 자세를 설정하고 DFBI(Dynamic Fluid Body Interaction) 방법에 의한 점성 유동해석을 수행한 것이다. 본 방법을 방법I로 명하였다. 방법I는 해석 전에 큰 자세를 설정함으로 인해 중첩격자(Overset Mesh) 기법을 사용하지 않는 단순한 격자시스템(Fig. 3 참고)을 사용하면 된다. 이로 인해 방법I는 계산시간 단축 및 계산의 정도를 높일 수 있는 장점이 있다. 점성 유동해석은 상용 CFD 코드인 STAR-CCM+를 사용하였다. 방법I의 첫 번째 점성 유동해석 결과는 최종 수렴된 결과와 비교하였을 때 저항 값에서 최대 1 % 내에서 차이를 보임을 확인 하였다. 중첩격자가 아닌 단순 격자시스템에 의한 STAR-CCM+에서 제공하는 DFBI 기법을 활용하여 계산단계 별로 변화된 자세에 대하여 매번 격자를 변경하여 수렴된 결과를 도출하였다. 본 방법을 방법II로 명하였다. 방법II의 저항 값과 비교하였을 때 방법I은 선속에 따라 0.03 % ~ 0.6 %의 차이를 보였다. 방법I의 결과는 수조모형시험과의 비교를 통해서 정성적 그리고 정량적으로 타당함을 확인하였다.

고속열차 주위의 점성 압축성 2차원 유동해석 (Numerical Analysis of 2-Dimensional Viscous Compressible Flow around the High Speed Train)

  • 하성도;김유일
    • 연구논문집
    • /
    • 통권25호
    • /
    • pp.13-22
    • /
    • 1995
  • At the running speed higher than 250 km/h, several aerodynamic problems such as the increase of aerodynamic resistance, aerodynamic noise, pressure fluctuation at the tunnel entry, impulsive wave at the tunnel exit bring about the power consumption, deterioration of riding quality, and severe environmental noise. To solve these aerodynamic problems, the flow phenomena around the high speed train have to be analyzed in detail. In this study, the flow around the train is modelled as the 2-dimensional viscous compressible flow and the flow field is calculated numerically for the three different types of geometry and running speed. The aerodynamic drag coefficient and the pressure coefficient are evaluated each case.

  • PDF

평면 점성 정체 유동 응고 문제에 대한 이론적 해석 (A theoretical analysis on the viscous plane stagnation-flow solidification problem)

  • 유주식
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.260-270
    • /
    • 1998
  • The viscous plane stagnation-flow solidification problem is theoretically investigated. An analytic solution at the beginning of solidification is obtained by expanding the temperature and thickness of solidified layer in powers of time. An exact expression for the steady-state thickness of solidified layer is also obtained. The .fluid flow toward the cold substrate inhibits the solidification process. As Stefan number becomes larger, or Prandtl number becomes smaller, the solidification is more strongly inhibited by the fluid flow. The transient heat flux at the liquid side of solid-liquid interface is increased, as Stefan number or Prandtl number is increased.

  • PDF

핫엠보싱 공정에서의 미세 패턴 성형에 관한 연구 (Study of nano patterning rheology in hot embossing process)

  • 김호;김광순;김헌영;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.371-376
    • /
    • 2003
  • The hot embossing process has been mentioned as one of major nanoreplication techniques. This is due to its simple process, low cost, high replication fidelity and relatively high throughput. As the initial step of quantitating the embossing process, simple parametric study about embossing time have been carried out using high-resolution masters which patterned by the DRIE process and laser machining. Under the various embossing time, the viscous flow of thin PMMA films into microcavities during Compression force has been investigated. Also, a study about simulating the viscous flow during embossing process has planned and continuum scale FDM analysis was applied on this simulation. With currently available test data and condition, simple FDM analysis using FLOW3D was made attempt to match simulation and experiment.

  • PDF

비대선 모형에 대한 점성유동의 수치해석연구 (A Study on the Numerical Analysis of the Viscous Flow for a Full Ship Model)

  • 박명규;강국진
    • 한국항해학회지
    • /
    • 제19권2호
    • /
    • pp.13-22
    • /
    • 1995
  • This paper presents the numerical analysis results of the viscous flow for a full ship model. The mass and momentum conservation equations are used for governing equations, and the flow field is discretized by the Finite-Volume Method for the numerical calculation. An algebraic grid and elliptic grid generation techniques are adopted for generation of the body-fitted coordinates system, which is suitable to ship's hull forms. Time-marching procedure is used to solve the three-dimensional unsteady problem, where the convection terms are approximated by the QUICK scheme and the 2nd-order central differencing scheme is used for other spatial derivatives. A Sub-Grid Scale turbulence model is used to approximate the turbulence, and the wall function is used at the body surface. Pressure and velocity fields are calculated by the simultaneous iteration method. Numerical calculations were accomplished for the Crude Oil Tanker(DWT 95,000tons, Cb=0.805) model. Calculation results are compared to the experimental results and show good agreements.

  • PDF

비정렬 혼합 격자계에서 신속 격자 변형 기법을 이용한 비정상 점성 유동 해석 (NUMERICAL ANALYSIS OF UNSTEADY VISCOUS FLOWS USING A FAST GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES)

  • 이희동;정문승;권오준
    • 한국전산유체공학회지
    • /
    • 제14권3호
    • /
    • pp.33-48
    • /
    • 2009
  • In the present study, a fast grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were also simulated to demonstrate the robustness of the present grid deformation technique.

한 쌍의 실린더를 가지는 점성구동 마이크로 펌프의 성능 해석 (Performance Analysis of the Viscous-driven Micropump with Tandem Rotating Cylinders)

  • 최형일;조성찬;맹주성
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1256-1261
    • /
    • 2003
  • Since the viscous effect increases as the size of device decreases, viscous-driven micropump is a promising mechanism in microscale applications. In the present study, a dual-rotor type pump which contains two counter-rotating cylinders for improving performance characteristics is proposed. First, for flows in the single-rotor type pump, the present unstructured grid simulation method is validated by comparing its results to the previous results. Next, the performance of the dual-rotor type pump is evaluated by the parametric studies and is compared to that of the previous single-rotor type pump. The flow characteristics are qualitatively similar to those of single-rotor type pump. However, the performance of the micropump with tandem rotors is still better than that of previous pumping type, e.g. much larger flow rate, smaller driving region, higher efficiency, and wider operation range.