• Title/Summary/Keyword: Viscosity measurement

Search Result 337, Processing Time 0.025 seconds

Unsteady Flow Rate Measurement Based on Distributed Parameter Pipeline Model (분포정수계 관로모델을 이용한 비정상 유량계측)

  • Kim, Do-Tae;Hong, Sung-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.8-13
    • /
    • 2008
  • The paper proposes a model-based measurement of unsteady flow rate by using distributed parameter pipeline model and the measured pressure values at two distant points along the pipeline. The distributed parameter model of hydraulic pipeline is applied with consideration of frequency dependent viscosity friction and unsteady velocity distribution at a cross section of a pipeline. By using the self-diagnostics functions of the measurement method, the validity is investigated by comparison with the measured and estimated pressure and flow rate wave forms at the halfway section on the pipeline. The results show good agreement between the estimated flow rate wave forms and theoretical those under unsteady laminar flow conditions. The method proposed here is useful in estimating unsteady flow rate through an arbitrary cross section in hydraulic pipeline and components without installing an instantaneous flowmeter.

Effects of Salts on Rheological Behaviour of Salvia Hydrogels

  • Yudianti, Rike;Karina, Myrtha;Sakamoto, Masahiro;Azuma, Jun-ichi
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.332-338
    • /
    • 2009
  • Rheological behavior of natural hydrogel produced from seeds of three Salvia spp. (S. miltiorrhiza (SM), S. sclarea (SS), S. viridis (SV)) was investigated by using a Rheometer equipped with a cone and plate geometry measuring system under never-dried condition. Different chemical contents of such hydrogels give significant effects on their rheological properties. Because of incomplete penetration of water inside the hydrogels after drying before-dried hydrogels were used for rheological analysis. To know molecular interactions which predominated in the gel formation, some constituents were externally added to the 1.0% (w/w) hydrogel. Addition of urea to disrupt hydrogen bonds reduced 3.4-67% viscosity of the untreated hydrogels and changed viscoelastic properties from gel to liquid-like behavior. Neutral salts added to the hydrogel solution at 0.1 M also lowered the viscosity in a manner related with increase in size of cations and temperature. Changing from gel state to liquid-like state was also easily confirmed by oscillation measurement (storage, G', and loss, G", modulii) typically observed in the cases of potassium sulfate and potassium thiocyanate. Influence of pH variation on the viscosity explained that weak alkaline condition (pH 8-9) creates a higher resistance to flow due to increasingly electrostatic repulsions between negative charges ($COO^-$) Importance of calcium bridges was also demonstrated by recovery of viscosity of the hydrogels by addition of calcium after acidification. The summarized results indicate that electrostatic repulsion is a major contributor for production of hydrogel structure.

Emulsion Viscosity with Oil Polarity and Interpretation by Organic Conceptual Diagram (오일 극성도에 따른 에멀젼의 점도와 유기개념도에 의한 해석)

  • Kim, Jung-Il;Kim, Hyun-Dong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.623-627
    • /
    • 2014
  • Emulsions are a class of disperse systems consisting of two immiscible liquids. Emulsions are affected by the size of oil drop, the type of continuous and disperse phase, the ratio of continuous and disperse phase, the type of emulsifies and emulsification devices. This study is to observe the viscosity of emulsions with oil polarities and interpret the results by organic conceptual diagram. The emulsions were made with hydrocarbon, ester and silicone oils and then the viscosity of emulsions was measured. As the oil polarity was increased, the viscosity of emulsion was decreased by reducing the amount of emulsifies and emulsion stabilizers arranged at interface. Organic conceptual diagram was used to compare the polarities among oils numerically. The interpretation of organic conceptual diagram and the results of experimental measurement were corresponded except emulsion made with silicone oil.

Quality Characteristics and Dough Rheological Properties of Pan Bread with Waxy Barley Powder (찰보리 분말을 첨가한 식빵의 레올로지 및 품질특성)

  • Jeong, Hyun-Chul;Ji, Joung-Lan
    • Culinary science and hospitality research
    • /
    • v.19 no.4
    • /
    • pp.119-135
    • /
    • 2013
  • This study investigates waxy barley powder substituted for wheat flour in bread recipes with the amounts of 0%(control), 5%, 10%, 15% and 20%. Waxy barley powder consisted of 8.33% of moisture content, 10.47% of crude protein, 1.63% of crude fat, and 2.97% of crude ash. Sedimentation value and pelshenke value have decreased as the waxy barley powder content increased. The farinograph measurement result of the bread made with waxy barley powder showed that consistency, water absorption, development time, stability and time breakdown have increased as the waxy barley powder content increased. The amylograph measurement result of the bread made with waxy barley powder showed that T have increased as the waxy barley powder content increased. Their P, H and P-H have decreased as the ingredient contents increased. Baking loss and specific loaf volume have decreased as the waxy barley powder content increased. The chromaticity measurement result of the bread made with waxy barley powder showed no significant difference as the waxy barley powder content increased. The texture measurement result showed that the hardness and gumminess of bread have increased as the waxy barley powder content increased. Their cohesiveness, springiness and chewiness have decreased as the ingredient contents increased. Overall preference scores showed a high acceptability for the bread made with 10% waxy barley powder.

  • PDF

Xanthan Gum Production from Hydrolyzed Rice Bran as a Carbon Source by Xanthomonas spp.

  • Demirci, Ahmet Sukru;Arici, Muhammet;Gumus, Tuncay
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.356-363
    • /
    • 2012
  • The aim of this study was to utilize rice bran, the main waste product of paddy processing, in xanthan gum production by Xanthomonas campestris fermentation. Deffated rice bran was enzymatically hydrolyzed using cellulase, gluco-amylase, alpha-amylase and xylanase at various pHs and temperatures within 0-12 h. The highest sugar content reached at $35^{\circ}C$, pH 5.5 in 6 h with 41.66%. The enzymatic hydrolysate was used as the carbon source for xanthan gum production by X. campestris NRRL B-1459 and X. campestris pv. campestris. The highest productivities obtained were 21.87 and 17.10 g/L, respectively. Viscosity measurement for the obtained xanthan gums and commercial gum was carried out in gum solutions at various pHs and temperatures. The highest viscosity was reached with 1% gum solutions at $20^{\circ}C$ and pH 5.5 for all gums with viscosity values of 470, 131 and 138 mPa sec, respectively. This work has provided relevant scientific information about the use of rice bran, an abundant agroindustrial residue, to produce xanthan gum.

Measurement of Viscosity and Numerical Analysis of High Speed Injection Molding for Thin-Walled LGP (박형 도광판의 고속사출성형을 위한 수지 점도 측정 및 수치해석)

  • Jung, T.S.;Kim, J.S.;Ha, S.J.;Cho, M.W.
    • Transactions of Materials Processing
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2014
  • The light guide plate has become the major component for the backlight module in general information technology products (e.g. mobile phones, monitors, etc.). High speed injection molding has been adopted for thin walled LGP giving advantages such as weight, shape, size, and reduction in production costs. In the current study, the rheological characteristics of high liquidity plastic resin PC(HL8000) were measured using a capillary rheometer to improve the reliability of the numerical analysis for high speed injection molding. With the measured viscosity and PVT of PC(HL8000), numerical analysis of injection molding was conducted using the simulation software(Moldflow). Filling time and deflection were predicted and compared with those of traditional PC resins(H3000, H4000). The results show that PC(HL8000) has significantly different rheological characteristics during high speed injection molding. Hence proper properties of the resin should be used to improve the accuracy of numerical predictions.

An Experimental Study on Biaxial Tensile Characteristics of ETFE Film and Stress Relaxation of Tension Typed Membrane Structures (ETFE 필름의 2축 인장특성 및 텐션방식 막구조물의 응력완화 거동에 관한 실험적 연구)

  • Kim, Seung-Deog;Jeong, Eul-Seok;Kawabata, Masaya
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Until recently, almost all ETFE film structures that have been erected is the cushion type because there are problems at lower allowable strength under elastic range and viscosity behaviour such as creep and relaxation of ETFE films under long-term stresses. But the number of tension type structures is currently increasing. This paper proposes the stretch fabrication of ETFE film to verify the applicability of ETFE films to tensile membrane structures. First of all, to investigate the possibility of application on tensile membrane structures, the stretch fabrication test is carried out, and it is verified that it is possible to increase the yield strength of the film membrane structures. After simulating the experiment also carries out an analytical investigation, and the effectiveness of the elasto-plastic analysis considering the viscous behavior of the film is investigated. Finally, post-aging tension measurement is conducted at the experimental facilities, and the viscosity behavior resulting from relaxation is investigated with respect to tensile membrane structures.

Study on the Long Time Breakdown Voltage in the Macro Interface between Epoxy and Rubber (에폭시/고무 거시계면에서 장시간 절연파괴전압에 대한 연구)

  • 박우현;이기식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.1003-1008
    • /
    • 2002
  • In this paper, the estimation of lifetime with the various conditions of the interface between toughened epoxy and rubber which are consisting materials of underground power delivery system has been studied. After the measurement of the short time AC interfacial breakdown strength on macro interfaces at room temperature, the breakdown time at several voltages were measured under the constant voltages lower than the short time breakdown voltage. The long time breakdown voltage was calculated by using Inverse Power Law. Two types of interfaces was studied. One was the interface between toughened epoxy and EPDM(Ethylene Prorylene Diene Terpolymer). The other was the interface between toughened epoxy and silicon rubber. Interfacial pressure and roughness of interfaces was determined through the characteristic of short time AC interfacial breakdown strength. Oil condition was no oiled, low viscosity oiled and high viscosity oiled. High viscosity oiled interface between Toughened epoxy and silicon rubber had the best lifetime exponent, 20.69. and the breakdown voltage of this interface after 30 years was evaluated 19.27㎸.

MEASUREMENT OF FLOW DISTRIBUTION IN A STRAIGHT DUCT OF RAILWAY TUNNEL MOCK-UP USING PIV AND COMPARISON WITH NUMERICAL SIMULATION (PIV 기법을 이용한 모형철도터널 직관덕트에서 유동 분포 계측 및 수치해석 결과와의 비교분석)

  • Jang, Y.J.;Jung, W.S.;Park, I.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • The turbulent flows in a tunnel mock-up($10L{\times}0.5W{\times}0.25H$ m3 : scale reduction 1/20) with rectangular cross section were investigated. The instantaneous velocity fields of Re = 49,029, 89,571 were measured by the 2-D PIV system which is consisted of double pulsed Nd:Yag laser and the tracer particles in the straight-duct mock-up where the flows were fully developed. The mean velocity profiles were taken from the ensemble averages of 1,000 instantaneous velocity fields. Simultaneously, numerical simulations(RANS) were performed to compare with experimental data using STREAM code. Non-linear eddy viscosity model (NLEVM : Abe-Jang-Leschziner Eddy Viscosity Model) was employed to resolve the turbulent flows in the duct. The calculated mean velocity profiles were well compared with PIV results. In the log-law profiles, the experimental data were in good agreement with numerical simulations all the way to the wake region except the viscous sub-layer (near wall region).

Comparison of Physicochemical Properties of Korean and Australian Wheat Flours Used to Make Korean Salted Noodles

  • Kim, In-Sook;Binns, Colin;Yun, Hon;Quail, Ken;Lee, Chi-Ho
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.275-280
    • /
    • 2007
  • The effect of using Korean wheat flour versus Australian wheat flour on noodle quality as a result of differing physical and chemical properties of the flours was investigated. The results provided appropriate technical information for selection of wheat varieties to produce high quality Korean salted noodles. Noodle quality was quantified based on measurement of the appearance and texture of noodles. When consumer preference tests were conducted, a firmer and more elastic texture was preferred for Korean white salted noodles, however, when appearance was included in the consumer tests, noodles made with Australian wheat were favored over Korean wheats. Korean flour was found to produce firmer and more elastic noodles, whereas Australian flour produced brighter, creamier colored noodles. In flour quality tests, Korean flours were found to have a higher setback viscosity and lower swelling power than Australian flour. Additionally, Korean flours had higher water absorption values. Protein content of flour was an important parameter affecting the firmness of Korean noodles, whereas setback viscosity and swelling power were the major determinants of elasticity. Overall, the important parameters for determination of the quality of Korean salted noodles were high setback viscosity, low swelling power, and high protein content.