• Title/Summary/Keyword: Viscosity equation

Search Result 393, Processing Time 0.031 seconds

Characteristics of Finite Difference Methods for the Shallow Water Equation (천수방정식의 유한차분 특성)

  • Lee, Kil Seong;Kang, Ju Whan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.41-52
    • /
    • 1989
  • Numerical characteristics for the shallow water equation are analyzed with ADI, Hansen, Heaps, Richtmyer and MacCormack schemes. Stability, CPU time and accuracy are investigated for the linear model which has analytic solutions and circulation is simulated for the nonlinear model. The results show that ADI method has some defects in CPU time and accuracy for the computation of velocity. But ADI method simulates circulation well and has the largest stability region. Richtmyer scheme is the best among the other explicit schemes. Effective viscosity term is found to be essential for numerical experiments of the shallow water equation.

  • PDF

Numerical study of CEDS scheme for turbulent flow (난류 유동장에 대한 CFDS 기법의 수치적 연구)

  • Moon Seong Mok;Kim Chongam;Rho Oh Hyun;Hong Seung Kyu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.23-26
    • /
    • 2002
  • An evaluation of one algebraic and two one-equation eddy viscosity-transport turbulence closure models as implemented to the CFDS(Characteristic Flux Difference Splitting) scheme is presented for the efficient computation of the turbulent flow. Comparisons of Baldwin-Lomax model as algebraic turbulence model and Baldwin-Barth and Spalart-Allmaras model as one-equation turbulence model are presented for three test cases for 3-dimensional flow. The numerical result of the CFDS schem is examined through comparison with the experimental data.

  • PDF

THERMAL INSTABILITY IN REACTIVE VISCOUS PLANE POISEUILLE / COUETTE FLOWS FOR TWO EXTREME THERMAL BOUNDARY CONDITIONS

  • Ajadi, Suraju Olusegun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.2
    • /
    • pp.73-86
    • /
    • 2009
  • The problem of thermal stability of an exothermic reactive viscous fluid between two parallel walls in the plane Poiseuille and Couette flow configurations is investigated for different thermal boundary conditions. Neglecting reactant consumption, the closed-form solutions obtained from the momentum equation was inserted into the energy equation due to dissipative effect of viscosity. The resulting energy equation was analyzed for criticality using the variational method technique. The problem is characterized by two parameters: the Nusselt number(N) and the dynamic parameter($\Lambda$). We observed that the thermal and dynamical boundary conditions of the wall have led to a significant departure from known results. The influence of the variable pre-exponential factor, due to the numerical exponent m, also give further insight into the behavior of the system and the results expressed graphically and in tabular forms.

  • PDF

Nonlinear Analysis of Seismic Responses of Large Tilting fad Journal Bearings (대형 틸팅패드 저어널 베어링의 비선형 지진응답 해석)

  • Kim Sung-Gi;Kim Kyung-Woong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.281-288
    • /
    • 2003
  • In this paper, seismic responses of large tilting pad journal bearings which have $3\~5$ tilting pads were numerically analyzed. The turbulent lubrication equation, the energy equation and motion equation were solved at each time step. The regime of operation of this bearing is laminar, turbulent and transitional. Also viscosity of working fluid was considered as function of only temperature and inlet pressure build-up was considered. Numerical results for a large tilting pad journal bearing showed journal center, maximum temperature, maximum pressure, friction torque. The relationship of bearing response and seismic intensity are discussed.

  • PDF

A Finite Element Galerkin High Order Filter for the Spherical Limited Area Model

  • Lee, Chung-Hui;Cheong, Hyeong-Bin;Kang, Hyun-Gyu
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.105-114
    • /
    • 2017
  • Two dimensional finite element method with quadrilateral basis functions was applied to the spherical high order filter on the spherical surface limited area domain. The basis function consists of four shape functions which are defined on separate four grid boxes sharing the same gridpoint. With the basis functions, the first order derivative was expressed as an algebraic equation associated with nine point stencil. As the theory depicts, the convergence rate of the error for the spherical Laplacian operator was found to be fourth order, while it was the second order for the spherical Laplacian operator. The accuracy of the new high order filter was shown to be almost the same as those of Fourier finite element high order filter. The two-dimension finite element high order filter was incorporated in the weather research and forecasting (WRF) model as a hyper viscosity. The effect of the high order filter was compared with the built-in viscosity scheme of the WRF model. It was revealed that the high order filter performed better than the built in viscosity scheme did in providing a sharper cutoff of small scale disturbances without affecting the large scale field. Simulation of the tropical cyclone track and intensity with the high order filter showed a forecast performance comparable to the built in viscosity scheme. However, the predicted amount and spatial distribution of the rainfall for the simulation with the high order filter was closer to the observed values than the case of built in viscosity scheme.

Prediction of Sensory Properties for the Stirred-type Fruit Yogurts by Instrumental Measurements (기계적 측정에 의한 호상요구르트의 관능특성 예측)

  • Oh, Se-Jong;Sim, Jae-Hun;Hur, Jae-Kwan;Shin, Jung-Gul;Kim, Sang-Kyo;Baek, Young-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.620-625
    • /
    • 1993
  • This experiment was carried out to predict the sensory properties of yogurt by instrumental methodology. Sensory attributes such as viscosity, mouth-feel, taste and quality were investigated. Instrumental parameters were measured with refractometer, viscometer, consistometer and rheometer. Sensory data showed that viscosity of peach yogurt was higher than that of strawberry and tropical-fruit-mixed (TFM) yogurts (p<.05). All instrumental parameters of peach yogurt were higher than those of strawberry and TFM yogurts, except cohesiveness and elasticity (p<.05). Viscosity measured by panelists was significantly correlated with instrumental viscosity, consistency, hardness, adhesiveness and gumminess in the fruit yogurts (p<.05). But mouth-feel and quality of yogurts showed poor relationships with instrumental parameters. The effective instrumental parameters for predicting sensory viscosity ($Y_{1}$) of yogurts were consistency ($X_{1}$), viscosity ($X_{2}$) and cohesiveness ($X_{3}$). And those for predicting mouth-feel ($Y_{2}$) were consistency. The estimated regression equations were as follows; $Y_{1}=4.968-0.0486X_{1}+0.00012X_{2}+0.0348X_{3},\;Y_{2}=5.701+0.0154X_{1}$.

  • PDF

A Three-dimensional Spectral Model for the Computation of Wind-induced Flows in a Homogeneous Shelf Sea (취송류 재현을 위한 3차원 스펙트랄모형 개발)

  • So, Jae-Kwi;Jung, Kyung-Tae;Lee, Kwang-Soo;Seung, Young-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.2
    • /
    • pp.91-107
    • /
    • 1992
  • A numerical formulation is developed to solve the linear three-dimensional hydrodynamic equations which describes wind induced flows in a homogeneous shelf sea. The hydmdynamic equations are at the outset separated into two systems. namely, an equation containing the gradient of sea surface elevation and the mean flow (external mode) and an equation describing the deviation from the mean flow (internal mode). The Galerkin method is then applied to the internal mode equation. The eigenvalues are determined from the eigenvalue problem involving the vertical eddy viscosity subject to a homogeneous boundary condition at the surface and a sheared boundary condition at the sea bed. The model is tested in a one-dimensional channel with uniform depth under a steady, uniform wind. The analytical velocity profile by Cooper and Pearce (1977) using a constant vertical eddy viscosity in channels of infinite and finite length is chosen as a benchmark solution. The model is also tested in a homogeneous, rectangular basin with constant depth under a steady, uniform wind field (the Heaps' Basin of the North Sea scale).

  • PDF

Thermohydrodynamic Lubrication Analysis of Surface-Textured Parallel Slider Bearing: Effect of Dimple Depth (Surface Texturing한 평행 슬라이더 베어링의 열유체윤활 해석: 딤플 깊이의 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.288-295
    • /
    • 2017
  • In order to improve the efficiency and reliability of the machine, the friction should be minimized. The most widely used method to minimize friction is to maintain the fluid lubrication state. However, we can reduce friction only up to a certain limit because of viscosity. As a result of several recent studies, surface texturing has significantly reduced the friction in highly sliding machine elements, such as mechanical seals and thrust bearings. Thus far, theoretical studies have mainly focused on isothermal/iso-viscous conditions and have not taken into account the heat generation, caused by high viscous shear, and the temperature conditions on the bearing surface. In this study, we investigate the effect of dimple depth and film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of textured parallel slider bearings. We analyzed the continuity equation, the Navier-Stokes equation, the energy equation, and the temperature-viscosity and temperature-density relations using a computational fluid dynamics (CFD) code, FLUENT. We compare the temperature and pressure distributions at various dimple depths. The increase in oil temperature caused by viscous shear was higher in the dimple than in the bearing outlet because of the action of the strong vortex generated in the dimple. The lubrication characteristics significantly change with variations in the dimple depths and film-temperature boundary conditions. We can use the current results as basic data for optimum surface texturing; however, further studies are required for various temperature boundary conditions.

Prediction of Rheological Properties of Cement-Based Pastes Considering the Particle Properties of Binders (결합재의 입자특성을 고려한 시멘트 기반 2성분계 페이스트의 유변특성 예측)

  • Eun-Seok Choi;Jun-Woo Lee;Su-Tae Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.111-119
    • /
    • 2023
  • Recently, a variety of new cement-based materials have been developed, and attempts to predict the properties of these new materials are increasing. In this study, we aimed to predict the rheological properties of binary blended pastes. The cementitious materials used in the study included Portland cement (PC), fly ash (FA), blast furnace slag (BS), and silica fume (SF). The three binder components, fly ash, blast furnace slag, and silica fume, were blended with cement as the foundational composition. We predicted the yield stress and plastic viscosity of the pastes using the YODEL (Yield stress mODEL) and Krieger-Dougherty's equation. The predictive model's performance was validated by comparing it with experimental results obtained using a rheometer. When the rheological properties of the binary blended paste were predicted by reconstructing the properties and parameters used to predict the individual materials, it was evident that the predictions made using the proposed method closely matched the experimental results.

Excess Volumes, Speeds of Sound, Isentropic Compressibilities and Viscosities of Binary Mixtures of N-Ethyl Aniline with Some Aromatic Ketones at 303.15 K

  • Gowrisankar, M.;Sivarambabu, S.;Venkateswarlu, P.;Kumar, K. Siva
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1686-1692
    • /
    • 2012
  • Densities (${\rho}$), Viscosities (${\eta}$) and ultrasonic speeds (u) of pure acetophenone (AP), propiophenone (PP), $p$-methyl acetophenone ($p$-MeAP), $p$-chloroacetophenone ($p$-ClAP) and those of their binary mixtures with $N$-ethyl aniline ($N$-EA) as a common component, were measured at 303.15 K over the entire composition range. These experimental data were used to calculate the excess volume $V^E$, deviation in ultrasonic speeds ${\Delta}u$, isentropic compressibility $K_s$, intermolecular free length $L_f$, acoustic impedance Z, deviations in isentropic compressibility ${\Delta}K_s$, deviation in viscosity ${\Delta}{\eta}$ and excess Gibbs free energy of activation of viscous flow ($G^{*E}$) at all mole fractions of $N$-ethyl aniline. These parameters, especially excess functions, are found to be quite sensitive towards the intermolecular interactions between component molecules. Theoretical values of viscosity of the binary mixtures were calculated using different empirical relations and theories. The relative merits of these relations and theories were discussed. The experimental results were correlated by using the polynomial proposed by Redlich-Kister equation.