Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.5.1686

Excess Volumes, Speeds of Sound, Isentropic Compressibilities and Viscosities of Binary Mixtures of N-Ethyl Aniline with Some Aromatic Ketones at 303.15 K  

Gowrisankar, M. (Department of Chemistry, J.K.C. College)
Sivarambabu, S. (Research Supervisor in Chemistry, Acharya Nagajuna University)
Venkateswarlu, P. (Department of Chemistry, S.V. University)
Kumar, K. Siva (Department of Chemistry, S.V. Arts (U.G. & P.G) College (T.T.D'S))
Publication Information
Abstract
Densities (${\rho}$), Viscosities (${\eta}$) and ultrasonic speeds (u) of pure acetophenone (AP), propiophenone (PP), $p$-methyl acetophenone ($p$-MeAP), $p$-chloroacetophenone ($p$-ClAP) and those of their binary mixtures with $N$-ethyl aniline ($N$-EA) as a common component, were measured at 303.15 K over the entire composition range. These experimental data were used to calculate the excess volume $V^E$, deviation in ultrasonic speeds ${\Delta}u$, isentropic compressibility $K_s$, intermolecular free length $L_f$, acoustic impedance Z, deviations in isentropic compressibility ${\Delta}K_s$, deviation in viscosity ${\Delta}{\eta}$ and excess Gibbs free energy of activation of viscous flow ($G^{*E}$) at all mole fractions of $N$-ethyl aniline. These parameters, especially excess functions, are found to be quite sensitive towards the intermolecular interactions between component molecules. Theoretical values of viscosity of the binary mixtures were calculated using different empirical relations and theories. The relative merits of these relations and theories were discussed. The experimental results were correlated by using the polynomial proposed by Redlich-Kister equation.
Keywords
Ultrasonic speed; Viscosity; Excess volume; $N$-Ethyl aniline; Ketone;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents Physical Properties and Method of Purifications; Wiley Interscience: New York, 1986; vol. 2.
2 Palepu, R.; Diver, J.; Campell, D. J. Chem. Eng. Data 1985, 30, 355.   DOI
3 Timmermans, J. Physico-Chemical Constants of Pure Organic Compounds; Elsevier Publications: Amsterdam, 1950; vol. 1.
4 In the Merck Index, 12th ed.; Susan, B., Ed.; Merck Research Laboratories Division: USA, 1996.
5 Jyostna, T. S.; Satyanarayana, N. Indian. J. Chem. Technology 2006, 13, 71.
6 Krishnaiah, A.; Surendranath, K. N. J. Chem. Eng. Data 1996, 41, 1012.   DOI   ScienceOn
7 Jacobson, B. J. Chem. Phys. 1952, 20, 927.
8 Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 345.   DOI
9 Urdaneta. O.; Haman, S.; Handa, Y. P.; Benson, G. C. J. Chem. Thermodyn. 1979, 11, 851.   DOI
10 Gupta, P. C.; Singh, M. Indian J. Chem. 2001, 40A, 293.
11 Francesconi, R.; Comelli, F.; Costellari, C. J. Chem. Eng. Data 2000, 45, 544.   DOI   ScienceOn
12 Tiwari, K.; Patra, C.; Chakravarthy, V. Acoust. Lett. 1995, 19, 53.
13 Gascon, I.; Mainer, A. M.; Fleix, M. R.; Urieta, J. S.; Cerdeirina, L. A. J. Chem. Eng. Data 2000, 40, 151.
14 Chen, H.-w.; Wen, C. C.; Tu, C. H. J. Chem. Eng. Data 2004, 49, 000.
15 Reed III, T. M.; Taylor, T. E. J. Phys. Chem. 1957, 63, 58.
16 Benson, G. C.; Kiyohara, O. J. Chem. Thermodyn. 1979, 11, 1061.   DOI
17 Agarwal, P. B.; Narwade, M. L. Indian J. Chem. 2005, 42, 1047.
18 Grunberg, L.; Nissan, A. H. Mixture Law for Viscosity, Nature 1949, 164, 799.
19 Mato, J. S.; Trenzado, J. L.; Alcalde, R. Fluid Phase Equilibria 2002, 202, 133.   DOI   ScienceOn
20 Singh, S.; Rattan, V. K.; Kapoor, S.; Kumar, R.; Rampal, A. J. Chem. Eng. Data 2005, 50, 288.   DOI   ScienceOn
21 Katti, P. K.; Chaudhri, M. H. J. Chem. Eng. Data 1964, 9, 442.   DOI
22 Hind, R. K.; McLaughlin, E.; Ubbelohde, A. Trans Faraday Soc. 1960, 56, 328.   DOI