• 제목/요약/키워드: Viscosity Wedge

검색결과 14건 처리시간 0.017초

NON LINEAR VARIABLE VISCOSITY ON MHD MIXED CONVECTION HEAT TRANSFER ALONG HIEMENZ FLOW OVER A THERMALLY STRATIFIED POROUS WEDGE

  • Kandasamy, R.;Hashim, I.;Ruhaila, K.
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.161-176
    • /
    • 2008
  • The effect of variable viscosity on MHD mixed convection Hiemenz flow over a thermally stratified porous wedge plate has been studied in the presence of suction or injection. The wall of the wedge is embedded in a uniform Darcian porous medium in order to allow for possible fluid wall suction or injection and has a power-law variation of the wall temperature. An approximate numerical solution for the steady laminar boundary-layer flow over a wall of the wedge in the presence of thermal diffusion has been obtained by solving the governing equations using numerical technique. The fluid is assumed to be viscous and incompressible. Numerical calculations are carried out for different values of dimensionless parameters and an analysis of the results obtained shows that the flow field is influenced appreciably by the magnetic effect, variable viscosity, thermal stratification and suction / injection at wall surface. Effects of these major parameters on the transport behaviors are investigated methodically and typical results are illustrated to reveal the tendency of the solutions. Comparisons with previously published works are performed and excellent agreement between the results is obtained.

  • PDF

CFD PARAMETRIC STUDY FOR 2D WATER ENTRY

  • Lee, H.H.;Rhee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.191-195
    • /
    • 2009
  • A parametric study for for the water entry of a two dimensional symmetric wedge with deadrise angle of 10 degrees was carried out to find out the most dominant parameter. Water entry problem with constant velocity is simplified as the stationary wedge in the way of the upcoming water surface. The calculated impact loads showed that the effect of the viscosity was not so important in this problem. For a given grid system a suitable time step size can be found. The most sensitive parameter was found to be the grid size.

  • PDF

높은 미끄럼 비의 점 접촉 EHL 하에서 발생하는 딤플 영역의 온도 분포와 유막 두께 분포의 측정 (Measurements of Film Thickness and Temperature Distribution in Dimple Zone Developed in EHL Point Contact at High Slip Ratios)

  • 김성기;;;;김경웅
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.479-484
    • /
    • 2003
  • In this paper, film thickness and temperature distribution are measured in EHL point contact at high slip ratios. Infrared temperature mapping with two band pass fillers. proposed by Ausherman (1976). is used to measure temperature distribution. And the optical interferornetric method with two filters (red and green filters) is used to measure film thickness. Result of experiment showed that temperature rising at film and ball surface occurred very dramatically in Dimple zone. As slip velocity, slip ratio and load increased, size of Dimple and temperature rising became more large In addition, Position and shape of Dimple we changed by slip ratios, and increasing of Dimple size decreased traction coefficient. In short, it is appointed that the Dimple phenomenon be developed by the effect of viscosity wedge.

Effect of flowable resin composite on bond strength to wedge shaped cavity walls.

  • Ogata, M.;Pereira, PNR.;Harada, N.;Nakajima, M.;Nikaida, T.;Tagami, J.
    • 대한치과보존학회:학술대회논문집
    • /
    • 대한치과보존학회 2001년도 추계학술대회(제116회) 및 13회 Workshop 제3회 한ㆍ일 치과보존학회 공동학술대회 초록집
    • /
    • pp.558.1-558
    • /
    • 2001
  • Flowable resin composite is a relatively new restorative material. It has been reported that a low viscosity, low modulus intermediate resin applied between the bonding agent and restorative resin act as an "elastic buffer" that can relieve contraction stress. This in-vitro study aimed to evaluate the effect of flowable composite resin as a restorative material on regional tensile bond stredgth to cervical wedge shaped cavity walls. (omitted)

  • PDF

유막온도경계조건이 평행 슬라이더 베어링의 윤활성능에 미치는 영향 (Effect of Film-Temperature Boundary Conditions on the Lubrication Performance of Parallel Slider Bearing)

  • 박태조;김민규
    • Tribology and Lubricants
    • /
    • 제33권5호
    • /
    • pp.207-213
    • /
    • 2017
  • In sliding bearings, viscous friction due to high shear acting on the bearing surface raises the oil temperature. One of the mechanisms responsible for generating the load-carrying capacity in parallel surfaces is known as the viscosity wedge effect. In this paper, we investigate the effect of film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of parallel slider bearings. For this purpose, the continuity equation, Navier-Stokes equation, and the energy equation with temperature-viscosity-density relations are numerically analyzed using the commercial computational fluid dynamics (CFD) code FLUENT. Two different film-temperature boundary conditions are adopted to investigate the pressure generation mechanism. The temperature and viscosity distributions in the film thickness and flow directions were obtained, and the factors related to the pressure generation in the equation of motion were examined in detail. It was confirmed that the temperature gradients in the film and flow directions contribute heavily to the thermal wedge effect, due to which parallel slider bearing can not only support a considerable load but also reduce the frictional force, and its effect is significantly changed with the film-temperature boundary conditions. The present results can be used as basic data for THD analysis of surface-textured sliding bearings; however, further studies on various film-temperature boundary conditions are required.

나노윤활유를 사용하는 평행 슬라이더 베어링의 윤활해석 (Lubrication Analysis of Parallel Slider Bearing with Nanolubricant)

  • 박태조;강정국
    • Tribology and Lubricants
    • /
    • 제39권3호
    • /
    • pp.87-93
    • /
    • 2023
  • Nanofluids are dispersions of particles smaller than 100 nm (nanoparticles) in base fluids. They exhibit high thermal conductivity and are mainly applied in cooling applications. Nanolubricants use nanoparticles in base oils as lubricant additives, and have recently started gathering increased attention owing to their potential to improve the tribological and thermal performances of various machinery. Nanolubricants reduce friction and wear, mainly by the action of nanoparticles; however, only a few studies have considered the rheological properties of lubricants. In this study, we adopt a parallel slider bearing model that does not generate geometrical wedge effects, and conduct thermohydrodynamic (THD) analyses to evaluate the effect of higher thermal conductivity and viscosity, which are the main rheological properties of nanolubricants, on the lubrication performances. We use a commercial computational fluid dynamics code, FLUENT, to numerically analyze the continuity, Navier-Stokes, energy equations with temperature-viscosity-density relations, and thermal conductivity and viscosity models of the nanolubricant. The results show the temperature and pressure distributions, load-carrying capacity (LCC), and friction force for three film-temperature boundary conditions (FTBCs). The effects of the higher thermal conductivity and viscosity of the nanolubricant on the LCC and friction force differ significantly, according to the FTBC. The thermal conductivity increases with temperature, improving the cooling performance, reducing LCC, and slightly increasing the friction. The increase in viscosity increases both the LCC and friction. The analysis method in this study can be applied to develop nanolubricants that can improve the tribological and cooling performances of various equipment; however, additional research is required on this topic.

상사해법을 이용한 쐐기형 물체 주위의 미세 극성유체 유동 특성에 관한 연구 (A Similarity Solution of the Characteristics of Micropolar Fluid Flow in the Vicinity of a Wedge)

  • 김윤제
    • 대한기계학회논문집B
    • /
    • 제23권8호
    • /
    • pp.969-977
    • /
    • 1999
  • A similarity solution of a steady laminar flow of micropolar fluids past wedges has been studied. The similarity variables found by Falkner and Skan are employed to reduce the streamwise-dependence in the coupled nonlinear boundary layer equations. Numerical solutions of the equations are then obtained using the fourth-order Runge-Kutta method and the distribution of velocity, micro-rotation, shear and couple stress across the boundary layer are obtained. These results are compared with the corresponding flow problems for Newtonian fluid past wedges with various wedge angles. Numerical results show that, keeping ${\beta}$ constant, the skin friction coefficient is lower for a micropolar fluid, as compared to a Newtonian fluid. For the case of constant material parameter K, however, the velocity distribution for a micropolar fluid is higher than that of a Newtonian fluid.

높은 구름/미끄럼 비를 갖는 점 접촉 EHL 하에서의 온도분포와 유막 두께 분포의 측정 (Measurements of film thickness and temperature distribution in EHL point contact at high roll/slip ratios)

  • 김성기;팔목화행;중원강광;경극계사;김경웅
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.293-298
    • /
    • 2001
  • In this paper, film thickness and temperature distribution are measured in EHL point contact at high roll/slip ratios. Infrared temperature mapping with two band pass filters, proposed by Ausherman (1976), is used to measure temperature distribution. And the optical interferometric method with two filters (red and green filters) is used to measure film thickness. Result of experiment showed that temperature rising at film and ball surface occurred very dramatically in Dimple zone. As slip velocity, roll/slip ratio and load increased, size of Dimple and temperature rising became more large. In addition, position and shape of Dimple were changed by roll/slip ratios, and increasing of Dimple size decreased traction coefficient. In short, it is appointed that the Dimple phenomenon be developed by the effect of viscosity wedge.

  • PDF

베어링의 열전도율이 평행 슬라이더 베어링의 윤활성능에 미치는 영향 (Effect of Thermal Conductivity of Bearing on the Lubrication Performance of Parallel Slider Bearing)

  • 박태조;이원석;박지빈
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.247-253
    • /
    • 2018
  • Temperature rise due to viscous shear of the lubricating oil generates hydrodynamic pressure, even if the lubricating surfaces are parallel. This effect, known as the thermal wedge effect, varies significantly with film-temperature boundary conditions. The bearing conducts a part of the heat generated; hence, the oil temperature varies with the thermal conductivity of the bearing. In this study, we analyze the effect of thermal conductivity on the thermohydrodynamic (THD) lubrication of parallel slider bearings. We numerically analyze the continuity equation, Navier-Stokes equation, energy equation including the temperature-viscosity and temperature-density relations for lubricants, and the heat conduction equation for bearing by creating a 2D model of the micro-bearing using the commercial computational fluid dynamics (CFD) code FLUENT. We then compare the variation in temperature, viscosity, and pressure distributions with the thermal conductivity. The results demonstrate that the thermal conductivity has a significant influence on THD lubrication characteristics of parallel slider bearings. The lower the thermal conductivity, the greater the pressure generation due to the thermal wedge effect resulting in a higher load-carrying capacity and smaller frictional force. The present results can function as the basic data for optimum bearing design; however, the applicability requires further studies on various operating conditions.

Finding the best combination of numerical schemes for 2-D SPH simulation of wedge water entry for a wide range of deadrise angles

  • Farsi, Mohammad;Ghadimi, Parviz
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.638-651
    • /
    • 2014
  • Main aim of this paper is to find the best combination of numerical schemes for 2-D SPH simulation of wedge water entry. Diffusion term is considered as laminar, turbulent, and artificial viscosity. Density filter that seriously affects the pressure distribution is investigated by adopting no filter, first order filter, and second order filter. Validation of the results indicates that turbulent model and first order density filter can lead to more reasonable solutions. This simulation was then conducted for wedge water entry with wide range of deadrise angles including 10 degrees, 20 degrees, 30 degrees, 45 degrees, 60 degrees and 81 degrees, with extreme deadrise angles of 10 degrees, 60 degrees and 81 degrees being considered. Comparison of SPH results with BEM solutions has displayed favorable agreement. In two particular cases where experimental data are available, the SPH results are shown to be closer to the experiments than BEM solution. While, accuracy of the obtained results for moderate deadrise angles is desirable, numerical findings for very small or very large deadrise angles are also very reasonable.