• 제목/요약/키워드: Viscosity Friction

검색결과 231건 처리시간 0.025초

가솔린 엔진에서 연료 분사량 및 오일 온도에 따른 피스톤 마찰손실 특성 연구 (Study on the Characteristics of Piston Friction Losses for Fuel Injected Mass and Oil Temperature in a Gasoline Engine)

  • 강종대;조진우;박성욱
    • 한국분무공학회지
    • /
    • 제27권3호
    • /
    • pp.161-166
    • /
    • 2022
  • To measure the change in friction loss due to the control of fuel mass and oil temperature in a gasoline engine, the floating liner method was used to measure the friction generated by the piston of a single-cylinder engine. First, to check the effect of combustion pressure on friction, the friction loss was measured by adjusting the fuel mass. It was confirmed that the friction loss increased as the fuel mass increased under the same lubrication conditions. In addition, it was confirmed that the mechanical efficiency decreased as the fuel mass increased. Next, to check the effect of lubrication conditions on friction, the friction loss was measured by controlling the oil temperature. It was confirmed that friction loss increased as the oil temperature decreased at the same fuel mass. As the oil temperature decreases, the viscosity increases, resulting in decreased mechanical efficiency and increased friction loss.

CMP 결과에 영향을 미치는 마찰 특성에 관한 연구 (Characteristics of Friction Affecting CMP Results)

  • 박범영;이현섭;김형재;서헌덕;김구연;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제17권10호
    • /
    • pp.1041-1048
    • /
    • 2004
  • Chemical mechanical polishing (CMP) process was studied in terms of tribology in this paper. CMP performed by the down force and the relative motion of pad and wafer with slurry is typically tribological system composed of friction, wear and lubrication. The piezoelectric quartz sensor for friction force measurement was installed and the friction force was detected during CMP process. Various friction signals were attained and analyzed with the kind of pad, abrasive and abrasive concentration. As a result of experiment, the lubrication regime is classified with ηv/p(η, v and p; the viscosity, relative velocity and pressure). The characteristics of friction and material removal mechanism is also different as a function of the kind of abrasive and the abrasive concentration in slurry. Especially, the material removal per unit distance is directly proportional to the friction force and the non~uniformity has relation to the coefficient of friction.

점도 변화에 따른 유류오염 모래의 역학적 특성 (Mechanical Properties of Oil Pollution Sand Due to Changes in the Viscosity of Oil)

  • 홍승서;배규진;김영석
    • 지질공학
    • /
    • 제25권4호
    • /
    • pp.577-585
    • /
    • 2015
  • 본 연구에서는 유류로 오염된 모래의 지반공학적 특성에 대하여 분석하였다. 오염물로 사용한 유류는 점도특성을 고려하여 등유, 원유, 자동차 엔진오일을 선정하였고, 모형지반은 주문진 표준사를 사용하였다. 실내시험은 다짐시험, 투수시험, 직접전단시험을 유류의 오염비율에 따라 수행하였다. 투수시험에서 유류의 함유비가 증가할수록 오염되지 않은 지반에 비해 투수계수가 점진적으로 저하되었다. 내부마찰각은 오염되지 않은 지반보다 상대적으로 감소하였다.

자동차용 냉연 강판의 표면 거칠기에 따른 마찰 특성 분석 (Effect of Surface Roughness on Frictional Behavior of Sheet Steel for Automotive)

  • 한수식;박기철
    • 소성∙가공
    • /
    • 제17권6호
    • /
    • pp.401-406
    • /
    • 2008
  • The frictional behavior of stamping process is a function of interface parameters such as sheet and tool material, lubricant, surface roughness, contact pressure, sliding speed etc. Among these parameters the thing that can be controlled by a steel maker is the surface roughness of sheet. In this study, effects of surface roughness on the frictional behavior of steel sheet for automotive were investigated to find out the way to improve the frictional characteristics of steel sheet. The cold rolled steel sheets with various surface roughnesses were prepared for the test. The flat type friction test was conducted with different lubricant conditions. The surface roughness effect on frictional behavior depends on the viscosity of lubricant. The frictional characteristic of steel sheet was influenced by the amplitude of roughness as well as the shape of that.

드로우비드 성형시 박판재 마찰계수 영향인자 해석 (Analysis on Parameters Affecting the Friction Coefficient in Drawbead Forming of Sheet Metal)

  • 김원태;이동활;서만석;문영훈
    • 소성∙가공
    • /
    • 제14권8호통권80호
    • /
    • pp.668-674
    • /
    • 2005
  • In sheet metal forming, drawbeads are often used to control uneven material flow which may cause deffets such as wrinkles, fractures, surface distortion and springback. Appropriate setting and adjusting of the drawbead force is one of the most important parameters in sheet forming process control. Therefore in this study, drawbead friction test with circular shape bead was performed at various sheets, lubricants(dry, three kinds of lubricants having different viscosities), bead materials and surface treatments of bead surface. The results obtained by drawbead friction test show that the friction and drawing characteristics of deforming panels were mainly influenced by strength of sheet, viscosity of lubricant and hardness of bead surface.

금형 표면 거칠기의 방향성이 판재의 마찰 특성에 미치는 영향 연구 (Study of Tool Surface Texture Directionality Effect on Frictional Behavior of Sheet Metal Forming)

  • 한수식
    • 소성∙가공
    • /
    • 제29권2호
    • /
    • pp.113-117
    • /
    • 2020
  • Various parameters are involved in the frictional behavior of steel sheet during stamping. We performed various tests in order to investigate the influence of tool surface texture directionality upon the resulting friction in sheet forming processes. Four different tools were manufactured which gave us a range of roughness for both parallel and transverse texture directions. Each of the tools was examined in flat type friction tests under identical test conditions. The tool with the transverse surface texture produces significantly lower levels of friction than the tool with parallel texture direction. Considering the lubrication mechanism associated with transverse texture, one can imagine the lubricant being constantly supplied from the reservoir of the micro valley to the point of contact and hence producing the lower levels of friction seen.

콜타르 핏치를 이용하여 제조된 탄소/탄소 복합재의 관성제동 마찰특성 (The Inertia Friction properties of the Carbon/Carbon Composites Manufactured Using a Coal-tar Pitch)

  • 이진용;서동수;임연수;이승구;박종규
    • 한국세라믹학회지
    • /
    • 제35권7호
    • /
    • pp.740-748
    • /
    • 1998
  • The inertia friction properties of C/C composites manufactured by the processes of pressure and at-mospheric carbonizaton with a commerciallized and two kinds of modified coal-tar pitch as a matrix pre-cursor were investigated. The modifications of a pitch such as the introduction of mesophase and the ad-dition of sulphur into a raw pitch were not effective for a impregnation efficiency conducted in a vacuum and at the same time in a pressure of 5kg/cm2 due to the increase of the pitch viscosity. There was not a difference in the densification increment between the pitch modifications however it was revealed that a pressure carbonization was more advantageous than an atmospheric in the densification and the formation of anisotropic carbon matrix. The friction and wear propertis of C/C having higher degree of matrix cry-stallization higher density and hardness of friction surface showed superiority. As the braking energy was increased the friction coefficients were decreased and reached almost same level at the high kinetic energy of 99.6kJ. The wear trends at 99.6kJ were different from the behaviors of friction ceofficient under the same energy in which an oxidation wear is being considered along with a mechnical wear although the wear rates were almost similar to the friction coefficient at the low energy.

  • PDF

Friction Characteristics of piston Skirt Parametric Investigation

  • Cho, Myung-Rae;Kim, Jee-Woon;Moon, Tae-Sun;Han, Dong-Chul
    • KSTLE International Journal
    • /
    • 제3권1호
    • /
    • pp.1-6
    • /
    • 2002
  • The purpose of this paper is to investigate the effects of design parameters on the friction loss in piston skirt. An analytical model to describe the friction characteristics of piston skirt has been presented, which is based on the secondary motion of piston and mixed lubrication theory, It could be shown that the skirt friction closely depends on the side force acted on the piston pin. The side force is inf1uenced by cylinder pressure at low engine speed, but by inertia force at high engine speed. The usage of extensive skirt area and low weight piston is effective to reduce the friction loss at high speed. The low viscosity oil considerably decreases viscous friction as engine speed increases, but it increases boundary friction at low engine speed. From the parametric study, it is found that the skirt axial profile is the most important design parameter related to the reduction of skirt friction.

CMP 공정에서 마찰력 측정을 통한 마멸 및 윤활 특성에 관한 연구 (Characteristic of the Wear and Lubrication using the Friction Froce Measurement in CMP Process)

  • 박범영;김형재;서헌덕;김구연;이현섭;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.231-234
    • /
    • 2004
  • Chemical mechanical polishing(CMP) process was studied in terms of tribology in this paper. CMP performed by the down force and the relative motion of pad and wafer with the slurry is typically tribological system composed of friction, wear and lubrication. The piezoelectric quartz sensor for friction force measurement was installed and the friction force was detected during CMP process. Various coefficient of friction was attained and analyzed with the kind of pad, abrasive and the abrasive concentration. The lubrication regime is also classified with ${\eta}v/p(\eta,\;v\;and\;p;$ the viscosity, relative velocity and pressure). Especially, the co-relation not only between the friction force and the removal per unit distance but also between the coefficient of friction and within-wafer-nonuniformity was estimated.

  • PDF

Surface Texturing한 평행 슬라이더 베어링의 열유체윤활 해석: 딤플 깊이의 영향 (Thermohydrodynamic Lubrication Analysis of Surface-Textured Parallel Slider Bearing: Effect of Dimple Depth)

  • 박태조;김민규
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.288-295
    • /
    • 2017
  • In order to improve the efficiency and reliability of the machine, the friction should be minimized. The most widely used method to minimize friction is to maintain the fluid lubrication state. However, we can reduce friction only up to a certain limit because of viscosity. As a result of several recent studies, surface texturing has significantly reduced the friction in highly sliding machine elements, such as mechanical seals and thrust bearings. Thus far, theoretical studies have mainly focused on isothermal/iso-viscous conditions and have not taken into account the heat generation, caused by high viscous shear, and the temperature conditions on the bearing surface. In this study, we investigate the effect of dimple depth and film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of textured parallel slider bearings. We analyzed the continuity equation, the Navier-Stokes equation, the energy equation, and the temperature-viscosity and temperature-density relations using a computational fluid dynamics (CFD) code, FLUENT. We compare the temperature and pressure distributions at various dimple depths. The increase in oil temperature caused by viscous shear was higher in the dimple than in the bearing outlet because of the action of the strong vortex generated in the dimple. The lubrication characteristics significantly change with variations in the dimple depths and film-temperature boundary conditions. We can use the current results as basic data for optimum surface texturing; however, further studies are required for various temperature boundary conditions.