• Title/Summary/Keyword: Viscosity Equation

Search Result 392, Processing Time 0.023 seconds

The Numerical Analysis of Non-Newtonian Flow through Branched and Stenotic Tube (CFD를 이용한 분지관.협착관의 비뉴턴 유체 해석)

  • Hwang, Do-Yeon;Ki, Min-Cheol;Han, Byeong-Yun;Park, Hyung-Koo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.385-388
    • /
    • 2008
  • The objective of this paper is simulating blood flow through the branched and stenotic tube numerically. SC-Tetra, which is one of the commercial code using FVM method, was utilized for this analysis. The flow is assumed as an incompressible laminar flow with the additional condition of non-Newtonian fluid. As the constitutive equation for the fluid viscosity, the following models were solved with governing equations ; Cross Model, Modified Cross Model, Carreau Model and Carreau-Yasuda Model. Final goal was achieved to get analytic data about shear stress, at specific points, changing the geometry with various factors like the bifurcation angle, diameter of the branches, the ratio of stenosis, and etc. The material property of blood was referred from the related papers. Furthermore, to verify results they were compared with those of the published papers. There were some discrepancies based on the different solver and the different data post-processing method. However, many parameters like the location of low shear stress, which arised from bifurcation or stenosis, and the tendency of various factors were found to be very similar.

  • PDF

Computer Simulation for the Cavitation Changes at the Exit of Offset Printing Nip (오프셋 인쇄의 틈새출구에서 공동의 변화에 대한 시뮬레이션)

  • Youn, Jong-Tae;Kim, Yun-Taek;Lim, Soo-Man
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.1-10
    • /
    • 2014
  • Offset paper printing is a promising roll-to-roll technique for color printed materials. Although it is no doubt that understanding ink transfer mechanism in offset printing process is necessary to achieve high printing quality, investing the relationship between inks and substrates at the nip is difficult experimentally due to high printing speed. In this paper, rheological behavior and splitting point of the ink at the nip is studied using package software Ployflow and Flow 3D based on Navier-Stokes equation. Polydimethylsiloxane (PDMS) ink and IGT printability tester were used for an model ink and experiment to compare with that of simulation data, respectively. As a result, higher viscosity at state flow and pressure increased ink transfer due to higher possibility of presence of cavitation at the nip and increase in covering area ratio. These results have shown good agreements with experimental data compared by measuring density of print through.

Steady Boundary Layer Flow under the Influence of Progressive Finite Amplitude Wave (진행성 유한진폭파로 인한 정상성 경계층류)

  • OhImSang
    • 한국해양학회지
    • /
    • v.21 no.4
    • /
    • pp.259-264
    • /
    • 1986
  • The problem of the formation of steady stream of flat bottom boundary is revisited by applying a progressive finite amplitude wave as an external flow. A solution for the boundary layer is found by expanding the boundary equation into double Fourier series. A vertical profile of the stream is obtained as a function of the ratio, h/L, where h and L are the water depth and the wave length. For the best applicable range of the external wave, it is shown that the boundary stream is independent of the fluid viscosity, but a function of the wave parameters and the water depth. The stream velocity of the steady boundary layer flow is proportional to the wave phase velocity and the square of the ratio, H/h, where His the wave height. The magnitude of the velocity is insignificant when h/L is greater than 1/5.

  • PDF

Discoloration and the Effect of Antioxidants on Thermo-Oxidative Degradation of Polyamide 6 (폴리아미드 6의 열 산화반응에 의한 황변 현상과 산화방지제의 효과)

  • ;;;T. Mori
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.452-461
    • /
    • 2002
  • In this study, the effect of various concentrations of antioxidants on thermo-oxidative degradation of polyamide 6 was investigated. Unstabilized and stabilized polyamides 6 were subjected to long-term oven aging in ambient atmosphere at 70~$160^{\circ}C$. All of specimens were discolored within 100 hr at temperature range of 70~$160^{\circ}C$. Optimum antioxidant concentration was determined from the data of mechanical properties, yellowness index and relative viscosity. The synergistic effect of each primary and secondary antioxidant concentrations was not observed. Yellowing phenomenon was explained by using NMR, IR and EA. Different carbonyl groups were detected by $^{13}C$/NMR. During thermooxidative degradation, oxygen consumptions were determined by EA. The lifetime after long-term aging was predicted using Arrhenius equation.

A Study on Reaction Kinetics of PTMG/TDI Prepolymer with MOCA by Non-Isothermal DSC

  • Ahn, WonSool;Eom, Seong-Ho
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.92-97
    • /
    • 2015
  • A study on reaction kinetics for a PTMG/TDI prepolymer with 2,2'-dichloro-4,4'-methylenedianiline (MOCA), of which formulations may be generally used for fabricating high performance polyurethane elastomers, was peformed using non-isothermal differential scanning calorimetry (DSC). A number of thermograms were obtained at several constant heating rates, and analysed using Flynn-Wall-Ozawa (FWO) isoconversional method for activation energy, $E_a$ and extended-Avrami equation for reaction order, n. Urea formation reaction of the present system was observed to occur through the simple exothermic reaction process in the temperature range of $100{\sim}130^{\circ}C$ for the heating rate of $3{\sim}7^{\circ}C/min$. and could be well-fitted with generalized sigmoid function. Though activation energy was nearly constant as $53.0{\pm}0.5kJ/mol$, it tended to increase a little at initial stage, but it decreases at later stage by the transformation into diffusion-controlled reaction due to the increased viscosity. Reaction order was evaluated as about 2.8, which was somewhat higher than the generally well-known $2^{nd}$ order values for the various urea reactions. Both the reaction order and reaction rate explicitly increased with temperature, which was considered as the indication of occurring the side reactions such as allophanate or biuret formation.

Anionic Polymerization of ${\varepsilon}$-Caprolactam via $SO_2$/ KOH Catalysis (II) ($SO_2$/ KOH Catalysis에 의한 ${\varepsilon}$-Caprolactam의 음이온 중합 (제2보))

  • Gil-Soo Suh;Sam-Kwon Choi
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.2
    • /
    • pp.132-138
    • /
    • 1977
  • Anionic polymerization of ${\varepsilon}$-caprolactam via $SO_2$/KOH catalysis was attempted in order to find an optimal reaction condition and physical properties of the polymers. The yield of conversion was relatively low at low temperature and high at high temperature between $150^{\circ}C\;to\;180^{\circ}C$ regardless of $SO_2$/KOH mole ratio in polymerization of ${\varepsilon}$-caprolactam.The inherent viscosity of nylon 6 obtained via $SO_2$/KOH catalysis was 1.2∼2.7. The kinetic equation for the $SO_2$/KOH catalyzed polymerization has been derived and experimentally verified.

  • PDF

A new configuration in a prosthetic knee using of hybrid concept of an MR brake with a T-shaped drum incorporating an arc form surface

  • Sayyaadi, Hassan;Zareh, Seiyed Hamid
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.275-296
    • /
    • 2016
  • This paper focuses on developing a new configuration on magnetorheological (MR) brake damper as prosthetic knee. Prosthetic knee uses magnetic fields to vary the viscosity of the MR fluid, and thereby its flexion resistance. Exerted transmissibility torque of the knee greatly depends on the magnetic field intensity in the MR fluid. In this study a rotary damper using MR fluid is addressed in which a single rotary disc will act as a brake while MR fluid is activated by magnetic field in different walking gait. The main objective of this study is to investigate a prosthetic knee with one activating rotary disc to accomplish necessary braking torque in walking gait via T-shaped drum with arc surface boundary and implementing of Newton's equation of motion to derive generated torque at the inner surface of the rotary drum. For this purpose a novel configuration of a T-shaped drum based on the effects of a material deformation process is proposed. In this new design, the T-shaped disc will increase the effective areas of influences in between drum and MR fluid together and the arc wall crushes the particles chains (fibrils) of the MR fluid together instead of breaking them via strain in a conventional MR brake. To verify the proposed MR brake, results of the proposed and conventional MR brakes are compared together and demonstrated that the resisting torque of the proposed MR brake is almost two times greater than that of the conventional brake.

Robustness Improvement and Assessment of EARSM k-ω Model for Complex Turbulent Flows

  • Zhang, Qiang;Li, Dian;Xia, ZhenFeng;Yang, Yong
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.67-72
    • /
    • 2015
  • The main concern of this study is to integrate the EARSM into an industrial RANS solver in conjunction with the $k-{\omega}$ model, as proposed by Hellsten (EARSMKO2005). In order to improve the robustness, particular limiters are introduced to turbulent conservative variables, and a suitable full-approximation storage (FAS) multi-grid (MG) strategy is designed to incorporate turbulence model equations. The present limiters and MG strategy improve both robustness and efficiency significantly but without degenerating accuracy. Two discretization approachs for velocity gradient on cell interfaces are implemented and compared with each other. Numerical results of a three-dimensional supersonic square duct flow show that the proper discretization of velocity gradient improves the accuracy essentially. To assess the capability of the resulting EARSM $k-{\omega}$ model to predict complex engineering flow, the case of Common Research Model (CRM, Wing-Body) is performed. All the numerical results demonstrate that the resulting model performs well and is comparable to the standard two-equation models such as SST $k-{\omega}$ model in terms of computational effort, thus it is suitable for industrial applications.

LES of Supercritical Combustion of Shear-coaxial Injector of a Methane-LOx Liquid Rocket Engine (액체로켓(메탄-LOx) 동축인젝터의 초임계 연소 LES 연구)

  • Heo, Jun-Young;Kim, Kuk-Jin;Sung, Hong-Gye;Yang, Vigor
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.190-193
    • /
    • 2010
  • The turbulent mixing and combustion of a shear coaxial injector under supercritical pressures have been theoretically/numerically investigated. Turbulent numerical model is based on large eddy simulation with real-fluid transport and thermodynamics over the entire pressure; Soave modification of Redlich-Kwong equation of state, Chung's model for viscosity/conductivity, and Fuller's theorem for diffusivity to take account Takahashi's compressible effect. The results are compared with previous researcher's. The large-scale vortices shedding from the outer rim into the recirculation region to react with gaseous oxygen was investigated.

  • PDF

A Study on Fluid Flow Characteristic In a Microchannel (미세 유로에서의 유동 특성에 관한 연구)

  • Kim, Hyung-Woo;Oh, Jae-Geun;Jeong, Si-Young;Choi, Bum-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3282-3285
    • /
    • 1999
  • Fluid characteristics at microscale were tried to be solved in this paper by showing how they deviate with conventional flow governing equations. (e.g. Navier-Stokes Equation) In earlier studies, this deviation phenomena was caused because of omitting no slip flow condition, micropolar effect and EDL(Electric Double Layer)effect of fluid which are usually negligible at macroscaled phenomena. The characteristics of fluid flow were tried to be studied by measuring pressure difference of specified length of the channels using the almost squared micromachined channels. By acquiring pressure difference, we could drive different values (viscosity, flow velocity. etc) from it and these data will be compared with macroscaled flow characteristics. As making microchannel is not easy work and that our knowledge is at mere stage, we had to fail to make it in this time. The hardest thing in this work is to make a hole which is directly connected with channel. The more efficient and easy way of making microchannel is proposed in this paper.

  • PDF