• Title/Summary/Keyword: Viscosities

Search Result 574, Processing Time 0.026 seconds

Physicochemical characterization of brown rice and milled rice at 2% degree of milling (DOM) (현미와 2분도미의 이화학적 품질 특성)

  • Choi, Induck;Choi, Hye-Sun;Park, Jiyoung;Kim, Nam-Geol;Lee, Seuk-Ki;Chun, Areum;Park, Chang-Hwan;Chun, Jiyeon
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.214-220
    • /
    • 2019
  • Four rice varieties (Boseogchal for waxy, Baegjinju for medium-waxy, and Seolgaeng and Haiami for non-waxy) were milled to 2% degree of milling (DOM), and physicochemical and sensory properties of 2% milled rice (2% MR) were compared to those of brown rice (BR). No significant differences in the approximate compositions of BR and 2% MR were observed, whereas the grain color of 2% MR was slightly brighter than that of BR. For all varieties, water absorption ratio of BR was significantly increased by milling. The pasting properties of rice varied significantly depending on the variety, but there was no significant difference in peak and through viscosities between BR and 2% MR. Analysis of the texture of cooked rice showed that milling to 2% DOM caused a significant decrease in hardness, but an increase in adhesiveness and stickiness. Cooked Seolgaeng 2% MR scored significantly higher in the sensory evaluation than the corresponding BR. These results suggest that 2% DOM would be useful for improving the sensory properties of cooked non-waxy rice.

Physicochemical and pasting properties of rice starches from soft rice varieties developed by endosperm mutation breeding (배유 돌연변이처리로 개발된 연질미 전분의 이화학적 특성)

  • Kim, Jae Suk;No, Junhee;Shin, Malshick
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.109-113
    • /
    • 2019
  • The soft rice varieties, Hangaru and Singil, were developed via mutation breeding using N-methyl-N-nitrosourea treatment to obtain dry-milled rice flours. The physicochemical, morphological, and pasting properties of these starches were compared with those of Seolgaeng and Chuchung starches. Singil starch was found to exhibit the highest amylose content and initial pasting temperature, whereas Hangaru starch exhibited the highest water binding capacity and swelling power. Hangaru starch's granule size at $d_{50}$ was the largest among the four different starch types. Some Seolgaeng, Hangaru, and Singil granules were observed to have a round-faced polygon shape. Furthermore, the crystallinity of all four starch types was type A. The peak, trough, and final viscosities of the soft rice starches were also lower than those of normal starches. Notably, Hangaru starch showed the highest breakdown viscosity, but the lowest total setback viscosity among the four starches. From these results, the starch characteristics of the soft rice flours were discovered to be different based on the rice variety.

Application of Italian Ryegrass-Rice Double Cropping Systems to Evaluate the Physicochemical Properties of Soil and Yield and Quality of Rice in Paddy Field in Southern Parts of Korea (남부지역 논에서 토양의 이화학적 특성 및 벼의 생산성과 미질 향상을 위한 이탈리안 라이그라스-벼 이모작 작부체계의 적용)

  • Oh, Seo Young;Oh, Seong Hwan;Seo, Jong Ho;Choi, Jisu
    • Journal of Environmental Science International
    • /
    • v.30 no.8
    • /
    • pp.659-671
    • /
    • 2021
  • The physicochemical properties of soil and the yield and quality of rice (Oryza sativa L. cv. Sailmi) were assessed using Italian ryegrass (Lolium multiflorum Lam. cv. Kowinearly)-rice double cropping systems in the paddy fields at Goseong and Miryang in southern Korea. The average temperatures during the ripening period were approximately 1 ℃ higher than the optimal temperature for rice ripening and the sunshine duration was reduced by frequent rainfall. Consequently, it was slightly below the optimal conditions required for rice ripening. In the soil at Goseong, winter Italian ryegrass cropping increased the pH, electrical conductivity, and the contents of organic matter, total nitrogen (T-N), available P2O5, K, Ca, and Mg than winter fallowing. Particularly, the contents of T-N and available P2O5increased significantly. In the soil at Miryang, Italian ryegrass slightly increased the electrical conductivity and the T-N, Mg, and Na contents. Therefore, winter Italian ryegrass cropping improved the physicochemical properties of paddy soils; however, Italian ryegrass-rice double cropping slightly reduced the culm length at both Goseong and Miryang, without markedly changing the panicle length or number compared to fallow-rice cropping. Furthermore, at Goseong, Italian ryegrass-rice double cropping slightly decreased the spikelet number and milled rice yield, and increased the ripened grain rate; however, at Miryang, contrasting results were observed. In addition, fallow-rice cropping revealed no differences in the head rice or opaque rice rates. The protein content was slightly increased in Italian ryegrass-rice double cropping, without significant changes in the amylose content or Toyo value, compared to that in fallow-rice cropping. The peak and breakdown viscosities were slightly decreased. These results indicate that winter Italian ryegrass cropping might alter rice taste but may not exhibit remarkable negative effects on rice cultivation. Therefore, Italian ryegrass-rice double cropping system is recommended for paddy fields in southern Korea. Nevertheless, to increase the rice yield and quality, fertilization standards for rice cropping that consider the changes in the T-N and organic matter contents in paddy fields caused by winter Italian ryegrass cropping need to be established.

Effects of Solder Particle Size on Rheology and Printing Properties of Solder Paste (미세피치 접합용 솔더 페이스트의 솔더 분말 크기에 따른 레올로지 및 인쇄 특성 평가)

  • Jun, So-Yeon;Lee, Tae-Young;Park, So-Jeong;Lee, Jonghun;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.91-97
    • /
    • 2022
  • The wettability and rheological properties of solder paste with the size of the solder powder were evaluated. To formulate the solder paste, three types of solder powder were used: T4 (20~28 ㎛), T5 (15~25 ㎛), and T6 (5~15 ㎛). The viscosities of the T4, T5, and T6 solder pastes at 10 RPM were 155, 263, and 418 Pa·s, respectively. After 7 days, the viscosity of the T4 solder paste slightly increased by 2.6% and that of T5 was increased by 20.6%. The viscosity of the T6 solder paste after 7 days could not be measured due to high viscosity. The viscosity variation with solder particle size also affected on the printability of the solder. In the case of the T4 solder paste, printability, slump, bridging, and soldering properties were excellent. On the other hand, T5 showed slight dewetting and solder ball defects. Especially, T6, which the smallest powder size, showed poor printability and dewetting at the edge of solder.

Comparison of Yield Performance and Grain Properties of North Korean Rices between Alpine and Lowland Area in Southern Part of Korea (북한 벼 품종의 평야지와 고랭지간 수량 및 미질 특성 비교)

  • Kim, Young-Doo;Noh, Tae-Hwan;Lee, Jae-Kil;Yang, Bo-Gab;Lee, Seon-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.5
    • /
    • pp.578-585
    • /
    • 1996
  • This experiment was carried out to obtain the basic informations on yield performance and physicochemical quality properties of North Korean rices at southern high altitude area, Unbong and southeren plain area, Iksan. North Korean cultivars showed significant difference in number of spikelets per panicle, percentage of ripened grain and yield between two locations, but not significant in number of panicle per hill and l000-grain weight. The highest contribution to grain yield was the percentage of ripened grain and l000-grain weight at Iksan and Unbong, respectively, The protein, amylose content, alkali digestion value and Mg/K ratio showed larger variation in varieties than that in the locations cultivated. Mg and K revealed highly significant variations in locations, varieties and variety $\times$ location (V$\times$L) interaction. The amylogram characteristics such as initial pasting temperature, peak, breakdown, setback and consistency viscosities showed highly significant variation in locations, varieties and V$\times$L interaction. The physical characteristics of cooked rice such as adhesiveness, gumniness and chewiness also showed highly significant variations in locations, varieties and V$\times$L interaction.

  • PDF

Current Status and Perspectives in Varietal Improvement of Rice Cultivars for High-Quality and Value-Added Products (쌀 품질 고급화 및 고부가가치화를 위한 육종현황과 전망)

  • 최해춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.15-32
    • /
    • 2002
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s-1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great progress and success was obtained in development of high-quality japonica cultivars and quality evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice cultivars and special rices adaptable for food processing such as large kernel, chalky endosperm, aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer, Recently, new special rices such as extremely low-amylose dull or opaque non-glutinous endosperm mutants were developed. Also, a high-lysine rice variety was developed for higher nutritional utility. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and texture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak, hot paste and consistency viscosities of viscosities with year difference. The high-quality rice variety "IIpumbyeo" showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic microscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high probability of determination. The $\alpha$-amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were IIpumbyeo, Chucheongyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tonsil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, showed the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogradation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice breed. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large grain rices showed better suitability far fermentation and brewing. The glutinous rice were classified into nine different varietal groups based on various physicochemical and structural characteristics of endosperm. There was some close associations among these grain properties and large varietal difference in suitability to various traditional food processing. Our breeding efforts on improvement of rice quality for high palatability and processing utility or value-adding products in the future should focus on not only continuous enhancement of marketing and eating qualities but also the diversification in morphological, physicochemical and nutritional characteristics of rice grain suitable for processing various value-added rice foods.ice foods.

Steady Shear Flow and Dynamic Viscoelastic Properties of Semi-Solid Food Materials (반고형 식품류의 정상유동특성 및 동적 점탄성)

  • 송기원;장갑식
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.143-152
    • /
    • 1999
  • Using a Rheometrics Fluids Spectrometer(RFS II), the steady shear flow and the small-amplitude dynamic viscoelastic properties of three kinds of semi-solid food materials(mayonnaise, tomato ketchup, and wasabi) have been measured over a wide range of shear rates and angular frequencies. The shear rate dependence of steady flow behavior and the angular frequency dependence of dynamic viscoelastic behavior were reported from the experimentally measured data. In addition, some viscoplastic flow models with a yield stress term were employed to make a quantitative evaluation of the steady flow behavior, and the applicability of these models was also examined in detail. Furthermore, the correlations between steady shear flow(nonlinear behavior) and dynamic viscoelastic(linear behavior)properties were discussed using the modified power-law flow equations. Main results obtained from this study can be summarized as follows : (1) Semi-solid food materials are regarded as viscoplastic fluids having a finite magnitude of yield stress, and their flow behavior shows shear-thinning characteristics, exhibiting a decrease in steady flow viscosity with increasing shear rate. (2) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable to describe the steady flow behavior of semi-solid food materials. Among these models, the Heinz-Casson model has the best validity. (3) Semi-solid food materials show a stronger shear-thinning behavior at shear rate region higher than a critical shear rate where a more progressive structure breakdown takes place. (4) Both the storage and loss moduli are increased with increasing angular frequency, but they have a slight dependence on angular frequency. The elastic behavior is dominant to the viscous behavior over a wide range of angular frequencies. (5) All of the steady flow, dynamic, and complex viscosities are well satisfied with the power-law model behavior. The relationships between steady shear flow and dynamic viscoelastic properties can well be described by the modified forms of the power-law flow equations.

  • PDF

Physicochemical Properties of Chicken Thigh Meat Batter Containing Various Concentrations of NaCl (닭다리살 유화물의 염화나트륨(NaCl) 첨가수준에 따른 이화학적 특성)

  • Park, Sin-Young;Kim, Hack-Youn
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.262-267
    • /
    • 2016
  • Physicochemical characteristics of chicken-thigh emulsion manufactured with different concentrations of NaCl (0, 0.3, 0.6, 0.9, 1.2, and 1.5%) were examined. Moisture and ash contents of samples containing 1.2% and 1.5% NaCl were significantly higher than those of the other samples (p<0.05). Protein contents decreased with increasing NaCl concentration. The pH values of batters significantly decreased with increasing NaCl concentration (p<0.05). The lightness values of uncooked and cooked samples showed an upward trend with increasing concentration of NaCl. Redness and yellowness values of uncooked batters containing 1.2% and 1.5% NaCl were significantly lower than other samples (p<0.05). The cooking yield and viscosity of the samples increased with increasing NaCl concentration. Samples containing 1.2% and 1.5% NaCl showed higher viscosities than the controls and samples containing 0.3-0.9% NaCl. Therefore, it can be concluded that addition 1.2% NaCl in chicken thigh products is beneficial.

Physicochemical Characteristics of Cultivated Aromatic Rice Germplasm and Comparative Analysis of Flavor Components During Transplanting Time (국내 육성된 향미 품종의이앙시기별 이화학적 특성 및 향기성분 비교 분석)

  • Cho, Jun Hyun;Song, You Chun;Lee, Kwang Sik;Choi, Sik Won;Lee, Mi Ja;Jang, Ki Chang;Kim, Hyun Young;Kang, Hyeon Jung;Park, Ki Do;Seo, Woo Duck
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.175-183
    • /
    • 2017
  • BACKGROUND:The Aromatic rice which is characterized by the flavor of Nurungji when cooked rice, and consumption is increasing recently. The purpose of this study was to investigate the physicochemical characteristics and aroma components of five aromatic rice cultivars according to transplanting time. METHODS AND RESULTS: Quantitative analysis of protein, fat, fatty acid and essential amino acid for five aroma rice cultivars(Hyangmibyeo 2 ho, Aromi, Mihyang, Aranghyangchal, Heughyang)and transplanting time was analyzed by crude protein analyzer, gas chromatography (GC), liquid chromatography (LC) and viscosity analysis was done by using rapid viscosity analyzer (RVA). The content of 2-acetyl-1-pyrroline (2AP) was determined by gas chromatography mass spectrometer. (GC-MS) As a result, the average protein and lipid contents were 6.5% and 2.4%, respectively. The content of essential amino acid showed the highest content at 104.4mg/g. There was no significant change in normal nutrients during the transplanting time. By RVA, cv.Hyangmibyeo 2 ho showed the highest peak and total setback viscosities and lowest breakdown viscosity in early transplantation. The content of 2AP in flavor varieties and transplanting time was quantitatively analyzed by GC-MS. Among the cultivars, Aromi showed the highest 2AP contents at $66.7{\mu}g/100gin$ normal transplanting time. CONCLUSION: cv.Aromi and Hyangmibyeo 2 ho were excellent physicochemical properties and 2AP components contents amongaromatic rice cultivars tested. Theiroptimaltime to transplant was at the beginning of June in the area of Miryang.

Pasting Properties and Gel Strength of Non-Waxy Rice Flours Prepared by Heat-Moisture Treatment (수분-열처리로 제조한 멥쌀가루의 호화 특성과 겔 강도)

  • Seo, Hye-In;Kim, Chang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.196-204
    • /
    • 2011
  • Heat-moisture treatment (HMT) was applied to 4 samples of rice flours, Goami (GM), Taeguk (TG), Choochung (CC) and Koshihikari (KSHK), of which amylose contents were 31.5, 32.3, 24.3, and 23.3%, respectively. Wet-milled rice flours were dried, moisture content adjusted to 21, 24, 27 and 30%, respectively, and autoclaved at 100 and $105^{\circ}C$ for 30~90 min. The changes on swelling, solubility, RVA (rapid visco analyser) paste viscosities and gel strength were observed. In GM and TG, peak viscosity (PV) and breakdown (BD) decreased and no peak appeared as moisture and treatment time increased by HMT. In CC, FV increased notably with big increase of PV and setback (SB) by HMT compared to the other rice flours. BD in all the samples decreased as moisture, temperature, and time increased by HMT. RVA pasting properties of HMT GM and HMT TG were changed remarkably under conditions of moisture 21%, $100^{\circ}C$ and 30 min whereas for HMT CC and HMT KSHK, higher temperature or more time was required at the same mois ture levels. The swelling power, solubility and gel strength increased by HMT. Gel strength correlated positively with SB (r=0.78, p<0.01) and negatively with BD (r=-0.71, p<0.01) and PV (r=-0.36, p<0.05) resulting from strengthening the structure of starch granules in rice flours by HMT.