• 제목/요약/키워드: Viscoelastic material

Search Result 363, Processing Time 0.034 seconds

Optimal Viscoelastic Layered Dynamic Vibration Absorber (점탄성층을 갖는 내다지보형 동흡진기의 최적설계)

  • Im, Seong-Dae;Lee, Si-Bok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.31-37
    • /
    • 1989
  • The effectiveness of using a composite beam with constrained visco-elastic layer as a dynamic vibration absorber is investigated. The performance of this absorber is evaluated in terms of displacement transmissibility when to a primary beam with built-in ends and compared to that of the uniform beam absorber. The results of analysis and design show that it is possible to suppress simultaneoulsy the peak transmissibilities at two or more resonance frequencies and the optimal parameters are located within the available viscoelastic material properties.

  • PDF

Stress Analysis in Polymeric Coating Layer Deposited on Rigid Substrate

  • Lee, Sang Soon
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.161-165
    • /
    • 2015
  • This paper presents an analysis of thermal stress induced along the interface between a polymeric coating layer and a steel substrate as a result of uniform temperature change. The epoxy layer is assumed to be a linear viscoelastic material and to be theromorheologically simple. The viscoelastic boundary element method is employed to investigate the behavior of interface stresses. The numerical results exhibit relaxation of interface stresses and large stress gradients, which are observed in the vicinity of the free surface. Since the exceedingly large stresses cannot be borne by the polymeric coating layer, local cracking or delamination can occur at the interface corner.

Study on Transient Flow in Pipeline with Flexible Tube (탄성관을 삽입한 관로에서의 비정상류에 관한 연구)

  • Kim, Young-Joon;Tsukamoto, Hiroshi
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.825-828
    • /
    • 2005
  • Experimental and numerical study was done to confirm the effect of the flexible tube in pipeline on transient flow oscillation. Experiment was made for a pipeline with and without deformable flexible tube using a single pumping system of main stainless pipe. The wave speeds of main pipe and flexible tube were calculated from the pipe material properties, structures, and boundary conditions. Time dependent pressure fluctuations were calculated for the pipeline using the simple and the Kelvin-Voigt viscoelastic models for the deformation of main pipe and flexible tube. Pressure calculated by the Kelvin-Voigt viscoelastic model showed better agreement with measured one than pressure by the simple model. Experimental and numerical results show that the maximum pressure as well as amplitude of pressure oscillation was decreased by inserting short flexible tube in pipeline. Hence, inserted short flexible tube to pipeline was found to be effective for the suppression of strong pressure oscillation. Moreover, the wave speed in pipe was discussed based on numerical and experimental results.

  • PDF

Numerical study of flow of Oldroyd-3-Constant fluids in a straight duct with square cross-section

  • Zhang, Mingkan;Shen, Xinrong;Ma, Jianfeng;Zhang, Benzhao
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.2
    • /
    • pp.67-73
    • /
    • 2007
  • A finite volume method (FVM) base on the SIMPLE algorithm as the pressure correction strategy and the traditional staggered mesh is used to investigate steady, fully developed flow of Oldroyd-3-constant fluids through a duct with square cross-section. Both effects of the two viscoelastic material parameters, We and ${\mu}$, on pattern and strength of the secondary flow are investigated. An amusing sixteen vortices pattern of the secondary flow, which has never been reported, is shown in the present work. The reason for the changes of the pattern and strength of the secondary flow is discussed carefully. We found that it is variation of second normal stress difference that causes the changes of the pattern and strength of the secondary flow.

Sensitivity Analysis in the Estimation of Complex Elastic Modulus of Viscoelastic Materials by Transmissibility Measurements (전달율 측정에 의한 점탄성재료의 복소탄성계수 추출시의 민감도 분석)

  • 안태길;허진욱;김광준
    • Journal of KSNVE
    • /
    • v.2 no.2
    • /
    • pp.99-106
    • /
    • 1992
  • The complex Young's modulus of a viscoelastic material can be obtained as a function of frequency from the measurements of relative motion between the two ends of a bar-type specimen. Non-resonance method is usually used to obtain the complex Young's modulus over wide range of frequency including resonance points, while in resonance method information at resonance frequencies only is used. However, the complex Young's modulus obtained by the non-resonance method is often unreliable in the anti-resonance frequency regions because of the measurement noise problems. In this study, the effects of the random measurement errors on estimating the complex Young's modulus are studied in the aspect of sensitivity, and how to obtain the reliable frequency region for a given measurement error level is shown. The usable frequency regions in determining the complex Young's modulus are represented by a non-dimensional parameter formed with the wave length and specimen length.

  • PDF

Numerical Analysis of Pressure and Temperature Effects on Residual Layer Formation in Thermal Nanoimprint Lithography

  • Lee, Ki Yeon;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. To successfully imprint a nanosized pattern with the thermal NIL, the process conditions such as temperature and pressure should be appropriately selected. This starts with a clear understanding of polymer material behavior during the thermal NIL process. In this paper, a filling process of the polymer resist into nanometer scale cavities during the thermal NIL at the temperature range, where the polymer resist shows the viscoelastic behaviors with consideration of stress relaxation effect of the polymer. In the simulation, the filling process and the residual layer formation are numerically investigated. And the effects of pressure and temperature on NIL process, specially the residual layer formation are discussed.

Reduction of Structure-borne Noises in a Two-Dimensional Cavity using Optimal Treatment of Damping Materials (제진재의 최적배치를 통한 이차원 공동의 구조기인소음 저감)

  • Lee, Doo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1581-1587
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of viscoelastic unconstrained damping materials. For the analysis of structural- acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics of the viscoelastic materials with respect to frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.

The Rheological and Mechanical Model for Relaxation Spectra of Polydisperse Polymers

  • Kim, Nam Jeong;Kim, Eung Ryul;Hahn Sang Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.413-419
    • /
    • 1992
  • The theoretical equation for the relaxation spectrum of nonlinear viscoelastic polymeric material was derived from the Ree-Eyring and Maxwell non-Newtonian model. This model consists of infinite number of hyperbolic sine law Maxwell elements coupled in parallel plus a spring without a dashpot. Infinite number of nonlinear viscoelastic Maxwell elements can be used by specifying distribution of relaxation times, hole volumes, molecular weights, crystallite size and conformational size, etc. The experimentals of stress relaxation were carried out using the tensile tester with the solvent chamber. The relaxation spectra of nylon 6 filament fibers in various electrolytic solutions were obtained by applying the experimental stress relaxation curves to the theoretical equation of relaxation spectrum. The determination of relaxation spectra was performed from computer calculation.

Analysis of thermo-rheologically complex structures with geometrical nonlinearity

  • Mahmoud, Fatin F.;El-Shafei, Ahmed G.;Attia, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.27-44
    • /
    • 2013
  • A finite element computational procedure for the accurate analysis of quasistatic thermorheological complex structures response is developed. The geometrical nonlinearity, arising from large displacements and rotations (but small strains), is accounted for by the total Lagrangian description of motion. The Schapery's nonlinear single-integral viscoelastic constitutive model is modified for a time-stress-temperature-dependent behavior. The nonlinear thermo-viscoelastic constitutive equations are incrementalized leading to a recursive relationship and thereby the resulting finite element equations necessitate data storage from the previous time step only, and not the entire deformation history. The Newton-Raphson iterative scheme is employed to obtain a converged solution for the non-linear finite element equations. The developed numerical model is verified with the previously published works and a good agreement with them is found. The applicability of the developed model is demonstrated by analyzing two examples with different thermal/mechanical loading histories.

Thermoviscoelastic orthotropic solid cylinder with variable thermal conductivity subjected to temperature pulse heating

  • Abouelregal, A.E.;Zenkour, A.M.
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.201-209
    • /
    • 2017
  • This work aims to analyze the thermo-viscoelastic interaction in an orthotropic solid cylinder. The medium is considered to be variable thermal conductivity and subjected to temperature pulse. Analytical solution based on dual-phase-lags model with Voigt-type for behavior of viscoelastic material has been effectively proposed. All variables are deduced using method of Laplace transforms. Numerical results for different distribution fields, such as temperature, displacement and stress components are graphically presented. Results are discussed to illustrate the effect of variability thermal conductivity parameter as well as phase-lags and viscoelasticity on the field quantities. Results are obtained when the viscosity is ignored with and without considering variability of thermal conductivity. A comparison study is made and all results are investigated.