• Title/Summary/Keyword: Viscoelastic finite element analysis

Search Result 133, Processing Time 0.025 seconds

Application of Spectral Element Method for the Vibration Analysis of Passive Constrained Layer Damping Beams (수동감쇠 적층보의 진동해석을 위한 스펙트럴요소법의 적용)

  • Song, Jee-Hun;Hong, Suk-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • This paper introduces a spectrally formulated element method (SEM) for the beams treated with passive constrained layer damping (PCLD). The viscoelastic core of the beams has a complex modulus that varies with frequency. The SEM is formulated in the frequency domain using dynamic shape functions based on the exact displacement solutions from progressive wave methods, which implicitly account for the frequency-dependent complex modulus of the viscoelastic core. The frequency response function and dynamic responses obtained by the SEM and the conventional finite element method (CFEM) are compared to evaluate the validity and accuracy of the present spectral PCLD beam element model. The spectral PCLD beam element model is found to provide very reliable results when compared with the conventional finite element model.

Damped dynamic responses of a layered functionally graded thick beam under a pulse load

  • Asiri, Saeed A.;Akbas, Seref D.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.713-722
    • /
    • 2020
  • This article aims to illustrate the damped dynamic responses of layered functionally graded (FG) thick 2D beam under dynamic pulse sinusoidal load by using finite element method, for the first time. To investigate the response of thick beam accurately, two-dimensional plane stress problem is assumed to describe the constitutive behavior of thick beam structure. The material is distributed gradually through the thickness of each layer by generalized power law function. The Kelvin-Voigt viscoelastic constitutive model is exploited to include the material internal damping effect. The governing equations are obtained by using Lagrange's equations and solved by using finite element method with twelve -node 2D plane element. The dynamic equation of motion is solved numerically by Newmark implicit time integration procedure. Numerical studies are presented to illustrate stacking sequence and material gradation index on the displacement-time response of cantilever beam structure. It is found that, the number of waves increases by increasing the graduation distribution parameter. The presented mathematical model is useful in analysis and design of nuclear, marine, vehicle and aerospace structures those manufactured from functionally graded materials (FGM).

Flow-Induced Birefringence of Polymers in the Region of Abrupt Thickness Transition (두께가 급격히 변하는 영역에서 고분자 유동에 의한 복굴절)

  • Lee, H.S.;Isayev, A.I.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.20-25
    • /
    • 2009
  • A finite element analysis was carried out for a 4:1 planar contraction die for polymer melts using the viscoelastic constitutive equation of Leonov. Viscoelastic fluids showed significant differences in pressure drop and birefringence in contraction and expansion flows. The pressure drop was higher and the birefringence smaller in expansion than in contraction flow. The difference increased with increasing flow rate. The nonlinear Leonov model was shown to describe the viscoelastic effects observed in experiments.

Numerical Computation of the Stress Itensity Factor of A Cracked Viscoelastic Body Under the Impact Load (충격하중을 받는 점탄성 균열의 응력확대계수 계산)

  • Lee Sung-Hee;Sim Woo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1583-1589
    • /
    • 2004
  • In this paper, A new finite element method for the time domain analysis of the dynamic stress intensity factor of two-dimensional viscoelastic body with a stationary central crack under the transient dynamic load is presented, which is based on the intergrodifferential equations of motion in the isotropic linear viscoelasticity and the Galerkin's method. The vlscoelastic material is assumed to be elastic in dilatation and behaves like a standard linear solid in shear. As a numerical example, the Chen's problem in viscoelastodynamic version is solved for the parametric study about the effect of viscosity and relaxation time on the dynamic stress intensity factor.

APPLICATION OF VISCOELASTIC DAMPING FOR PASSIVE VIBRATION CONTROL IN AUTOMOTIVE ROOF USING EQUIVALENT PROPERTIES

  • LEE K. H.;KIM C. M.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.607-613
    • /
    • 2005
  • In this study, a simplified approach to modeling the dynamic characteristics of passive constrained layer damping treatments in finite element models is presented. The basic concept is to represent multi-layered composite structures using an equivalent single layer. The equivalent properties are obtained by using the RKU (Ross, Kerwin and Ungar) equations. Comparisons are given between results obtained by the dynamic analysis of the simple models implemented in MSC/NASTRAN and by test measurements. Surface damping treatments are applied to automotive panels as well as simple structures. Using the proposed equivalent modeling technique, higher computational efficiency for the damped composite structures has been obtained.

Forced vibration analysis of damped beam structures with composite cross-section using Timoshenko beam element

  • Won, S.G.;Bae, S.H.;Jeong, W.B.;Cho, J.R.;Bae, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.15-30
    • /
    • 2012
  • A damped Timoshenko beam element is introduced for the DOF-efficient forced vibration analysis of beam-like structures coated with viscoelastic damping layers. The rotary inertia as well as the shear deformation is considered, and the damping effect of viscoelastic layers is modeled as an imaginary loss factor in the complex shear modulus. A complex composite cross-section of structures is replaced with a homogeneous one by means of the transformed section approach in order to construct an equivalent single-layer finite element model capable of employing the standard $C^{0}$-continuity basis functions. The numerical reliability and the DOF-efficiency are explored through the comparative numerical experiments.

Viscoelastic Finite Element Analysis of Filling Process on the Moth-Eye Pattern (모스아이 패턴의 충전공정에 대한 점탄성 유한요소해석)

  • Kim, Kug Weon;Lee, Ki Yeon;Kim, Nam Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1838-1843
    • /
    • 2014
  • Nanoimprint lithography (NIL) fabrication process is regarded as the main alternative to existing expensive photo-lithography in areas such as micro- and nano-electronics including optical components and sensors, as well as the solar cell and display device industries. Functional patterns, including anti-reflective moth-eye pattern, photonic crystal pattern, fabricated by NIL can improve the overall efficiency of such devices. To successfully imprint a nano-sized pattern, the process conditions such as temperature, pressure, and time should be appropriately selected. In this paper, a cavity-filling process of the moth-eye pattern during the thermal-NIL within the temperature range, where the polymer resist shows the viscoelastic behaviors with consideration of stress relaxation effect of the polymer, were investigated with three-dimensional finite element analysis. The effects of initial thickness of polymer resist and imprinting pressure on cavity-filling process has been discussed. From the analysis results it was found that the cavity filling can be completed within 100 s, under the pressure of more than 4 MPa.

Dynamic Analysis of Sand-Clay Layered Ground Considering Viscous Effect of Clay

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.45-52
    • /
    • 2006
  • A cyclic viscoelastic-viscoplastic constitutive model for clay is incorporated into an effective stress based seismic response analysis to describe viscous effect of clay layer to sand layer during earthquake. The seismic response against main shock of 1995 Hyogoken Nambu Earthquake is analyzed in the present study. Acceleration responses in both clay layer and just upper liquefiable sand layer are damped due to viscous effect of clay. A cyclic viscoelastic-viscoplastic constitutive model for clay was implemented into a FEM code, and $Newmark{\beta}$ method was employed for the time discretization in the finite element formulation. Seismic responses were simulated by numerical method with recorded data at Port Island, Kobe, Japan. As results of this study, it was found that a cyclic viscoelastic-viscoplastic constitutive model can give good description of dynamic behavior characteristics including viscoelastic effect.

Analysis of Static Crack Growth in Asphalt Concrete using the Extended Finite Element Method (확장유한요소법을 이용한 아스팔트의 정적균열 성장 분석)

  • Zi, Goangseup;Yu, Sungmun;Thanh, Chau-Dinh;Mun, Sungho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.387-393
    • /
    • 2010
  • This paper studies static crack growth of asphalt pavement using the extended finite element method (XFEM). To consider nonlinear characteristics of asphalt concrete, a viscoelastic constitutive equation using the Maxwell chain is used. And a linear cohesive crack model is used to regularize the crack. Instead of constructing the viscoelastic constitutive law from the Prony approximation of compliance and retardation time measured experimentally, we use a smooth log-power function which optimally fits experimental data and is infinitely differentiable. The partial moduli of the Maxwell chain from the log-power function make analysis easy because they change more smoothly in a more stable way than the ordinary method such as the least square method. Using the developed method, we can simulates the static crack growth test results satisfactorily.

Behavior of the Flexural Vibration of a Sandwich Beam with Partially Inserted Viscoelastic Layer (점탄성층이 부분적으로 삽입된 샌드위치보의 횡진동 특성)

  • 박진택;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.167-170
    • /
    • 2000
  • The flexural vibration of a sandwich beam with partially inserted viscoelastic layer has been studied using the finite element analysis in combination with an experiment. Effects of length and thickness of partial viscoelastic layers on system loss factor(${\eta}_s$) and resonant frequency(${\omega}_r$) were considerably large. The thicker the viscoelastic layer in a sandwich beam, the larger the system loss factor in Mode 1 as compared with that in Mode 2. The loss factor increased almost linearly with increasing the length of partial viscoelastic layer. Effects of thickness of beams were also considered.

  • PDF